ОБМЕН ВЕЩЕСТВ

ОБМЕН ВЕЩЕСТВ
ОБМЕН ВЕЩЕСТВ
метаболизм, совокупность протекающих в живых организмах химич. превращений, обеспечивающих их рост, жизнедеятельность, воспроизведение, постоянный контакт и обмен с окружающей средой. Благодаря О. в. происходит расщепление и синтез молекул, входящих в состав клеток, образование, разрушение и обновление клеточных структур и межклеточного вещества. Напр., у человека половина всех тканевых белков расщепляется и строится заново в среднем в течение 80 сут, белки печени и сыворотки крови наполовину обновляются каждые 10 сут, а белки мышц— 180, отд. ферменты печени — каждые 2—4 ч. О. в. неотделим от процессов превращения энергии: потенциальная энергия химич. связей сложных орга-нич. молекул в результате химич. превращений переходит в другие виды энергии, используемой на синтез новых соединений, для поддержания структуры и функции клеток, температуры тела, для совершения работы и т. д. Все реакции О. в. и превращения энергии протекают при участии биол. катализаторов — ферментов. У самых разных организмов О. в. отличается упорядоченностью и сходством последовательности ферментативных превращений, несмотря на большой ассортимент химич. соединений, вовлекаемых в обмен. В то же время для каждого вида характерен особый, генетически закреплённый тип О. в., обусловленный условиями его существования. О. в. складывается из двух взаимосвязанных, одновременно протекающих в организме процессов — ассимиляции и диссимиляции, или анаболизма и катаболизма. В ходе катаболич. превращений происходит расщепление крупных органич. молекул до простых соединений с одновременным выделением энергий, которая запасается в форме богатых энергией фосфатных связей, гл. обр. в молекуле аденозинтрифосфорной к-ты (АТФ) и др. богатых энергией соединений. Катаболич. превращения обычно осуществляются в результате гидролитич. и окислит, реакций и протекают как в отсутствие кислорода (анаэробный путь-гликолиз, брожение), так и при его участии (аэробный путь — дыхание). Второй путь эволюционно более молодой и в энергетич. отношении более выгодный. Он обеспечивает полное расщепление органич. молекул до СО2 и Н2О. Разнообразные органич. соединения в ходе катаболич. процессов превращаются в ограниченное число небольших молекул (помимо СО2 и Н2О): углеводы — в триозофосфаты и (или) пиру ват, жиры — в ацетил-КоА, пропионил-КоА и глицерин, белки — в ацетил-КоА, оксалоацетат, а-кетоглютарат, фумарат, сукцинат и конечные продукты азотистого обмена — мочевину, аммиак, мочевую к-ту и др. В ходе анаболич. превращений происходит биосинтез сложных молекул из простых молекул-предшественников. Автотрофные организмы (зелёные растения и нек-рые бактерии) могут осуществлять первичный синтез органич. соединений из СО2 с использованием энергии солнечного света (фотосинтез) или энергии окисления неорганич. веществ. Гетеротрофы синтезируют органич. соединения только за счёт энергии и продуктов, образующихся в результате катаболич. превращений. Исходным сырьём для процессов биосинтеза в этом случае служит небольшое число соединений, в т. ч. ацетил-КоА, сукцинил-КоА, рибоза, пировиноградная к-та, глицерин, глицин, аспарагиновая, глутаминовая и др. аминокислоты. Каждая клетка синтезирует характерные для неё белки, жиры, углеводы и др. соединения. Напр., гликоген мышц синтезируется в мышечных клетках, а не доставляется кровью из печени. Как правило, синтез включает восстановит, этапы и сопровождается потреблением энергии. Катаболизм и анаболизм протекают в клетках одновременно и заключит, стадия катаболич. превращений является исходной стадией анаболизма. Однако катаболич. и анаболич. пути О. в. не совпадают между собой. Напр., в расщеплении гликогена до молочной к-ты участвует 12 ферментов, каждый из к-рых катализирует отд. этап этого процесса. Синтез же гликогена из молочной к-ты включает только 9 ферментативных этапов, представляющих собой обращение соотв. этапов катаболизма, а 3 недостающих заменяются иными ферментативными реакциями, к-рые используются только для биосинтеза. Не совпадают катаболич. и анаболич. пути обмена между белками и аминокислотами или между жирными к-тами и ацетил-КоА. Более того, разл. обменные реакции приурочены к определённым участкам клетки. Вся ферментативная система гликолиза локализуется в растворимой фракции цитоплазмы. В митохондриях сосредоточены процессы, связанные с биол. окислением и окислит. фосфорилированием, в лизосомах — гидролитич. ферменты, процессы биосинтеза белка осуществляются в рибосомах, а биосинтеза липидов — в эндоплазматич. сети и т. д. В разл. частях клетки локализуются и химически несовместимые реакции. Напр., окисление жирных к-т катализируется набором ферментов, локализованных в митохондриях, тогда как синтез жирных к-т из ацетил-КоА — с помощью другого набора ферментов, локализованных в цитоплазме. Хотя и катаболич., и анаболич. пути осуществляются специфическими наборами ферментов, их постоянно связывают и общие стадии О. в. (см. схему). Наиб, важным общим промежуточным продуктом О. в., участвующим во всех процессах, является ацетил-КоА. Большое значение имеет цикл превращений (циклтрикарбоновых к-т), в ходе к-рого ацетил-КоА через ряд промежуточных продуктов окисляется полностью до СО2 и Н2О. В то же время с ацетил-КоА начинается синтез жирных к-т, холестерина, ряда азотсодержащих соединений и т. д. В процессе эволюции организмы выработали тонкие регуляторные системы, обеспечивающие высокую степень упорядоченности и согласованности реакций и позволяющие приспособиться к изменениям условий окружающей среды. Для всех организмов существуют в осн. одинаковые системы регуляции, действующие на уровне клеточного О. в. В этом случае интенсивность и направленность биохи-мич. реакций может регулироваться воздействием либо на активность фермента путём его ингибирования или активирования, либо на его синтез или деградацию. Большую роль в регуляции играет строгая упорядоченность расположения ферментов в клеточных структурах, а также избират. проницаемость биол. мембран. Высокоразвитые организмы обладают дополнительными регуляторными механизмами — нервными и гормональными. Атрофия тканей после денервации указывает на важное значение нервных импульсов для клеточного О. в. Гормоны выполняют в клетках и тканях контролирующие функции, либо непосредственно воздействуя на ферменты или их синтез, либо влияя на проницаемость клеточных мембран, функц. состояние клеточных органоидов и систему циклич. нуклеотидов.
.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. — 2-е изд., исправл. — М.: Сов. Энциклопедия, 1986.)
обме́н веще́ств
(метаболизм), совокупность процессов химических и физических превращений, происходящих в живых организмах и обеспечивающих их жизнедеятельность при взаимодействии с внешней средой. Состоит из процессов пластического (анаболизм) и энергетического (катаболизм) обменов.
В процессе метаболизма из внешней среды в организм поступают различные вещества, которые подвергаются расщеплению до низкомолекулярных веществ с выделением энергии (энергетический обмен); одновременно происходят усвоение, использование и синтез сложных органических веществ для построения структур организма (пластический обмен), а также выделение образующихся (конечных) продуктов обмена во внешнюю среду. Благодаря обмену веществ в организме происходит обновление клеточных структур. Все реакции обмена веществ и превращения энергии протекают при участии биологических катализаторов – ферментов (см. Ферментативный катализ).
.(Источник: «Биология. Современная иллюстрированная энциклопедия.» Гл. ред. А. П. Горкин; М.: Росмэн, 2006.)

.

Игры ⚽ Нужно решить контрольную?
Синонимы:

Полезное


Смотреть что такое "ОБМЕН ВЕЩЕСТВ" в других словарях:

  • ОБМЕН ВЕЩЕСТВ — (метаболизм), совокупность химических превращений в организмах, обеспечивающих их рост, жизнедеятельность и воспроизведение. Основу обмена веществ составляют взаимосвязанные процессы синтеза (анаболизма) и распада (катаболизма), направленные на… …   Современная энциклопедия

  • Обмен веществ — (метаболизм), совокупность химических превращений в организмах, обеспечивающих их рост, жизнедеятельность и воспроизведение. Основу обмена веществ составляют взаимосвязанные процессы синтеза (анаболизма) и распада (катаболизма), направленные на… …   Иллюстрированный энциклопедический словарь

  • ОБМЕН ВЕЩЕСТВ — (метаболизм) совокупность всех химических изменений и всех видов превращений веществ и энергии в организмах, обеспечивающих развитие, жизнедеятельность и самовоспроизведение организмов, их связь с окружающей средой и адаптацию к изменениям… …   Большой Энциклопедический словарь

  • Обмен веществ — см. Метаболизм. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989. Обмен веществ превращения веществ (и энергии) в организмах, обеспечивающие их жизнеспособнос …   Экологический словарь

  • обмен веществ — метаболизм Словарь русских синонимов. обмен веществ сущ., кол во синонимов: 1 • метаболизм (3) Словарь синонимов ASIS. В.Н. Тришин …   Словарь синонимов

  • Обмен веществ — ОБМЕН, а, м. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • обмен веществ — см. метаболизм. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) …   Словарь микробиологии

  • обмен веществ — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN metabolism …   Справочник технического переводчика

  • Обмен веществ — Печень  важнейший орган метаболизма у животных (фотография печени крысы) Метаболизм (от греч. μεταβολή, «превращение, изменение»), обмен веществ  полный процесс превращения химических веществ в организме, обеспечивающих его рост, развитие,… …   Википедия

  • Обмен веществ —         или метаболизм, лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Ф. Энгельс,… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»