geometrical moment of inertia


geometrical moment of inertia
геометрический момент инерции

Англо-русский строительный словарь. 2013.

Смотреть что такое "geometrical moment of inertia" в других словарях:

  • Torque — For other uses, see Torque (disambiguation). Classical mechanics Newton s Second Law …   Wikipedia

  • Precession — For other uses, see Precession (disambiguation). Precession of a gyroscope Precession is a change in the orientation of the rotation axis of a rotating body. It can be defined as a change in direction of the rotation axis in which the second… …   Wikipedia

  • Bicycle wheel — For the Marcel Duchamp installation, see Bicycle Wheel. The front wheel from a racing bicycle made using a Mavic rim …   Wikipedia

  • Isaac Newton — Sir Isaac Newton …   Wikipedia

  • Poinsot's ellipsoid — In classical mechanics, Poinsot s construction is a geometrical method for visualizing the torque free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants:… …   Wikipedia

  • Defining equation (physics) — For common nomenclature of base quantities used in this article, see Physical quantity. For 4 vector modifications used in relativity, see Four vector. Very often defining equations are in the form of a constitutive equation, since parameters of… …   Wikipedia

  • Rigid body dynamics — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

  • Euler angles — The Euler angles were developed by Leonhard Euler to describe the orientation of a rigid body (a body in which the relative position of all its points is constant) in 3 dimensional Euclidean space. To give an object a specific orientation it may… …   Wikipedia

  • Centrifugal force — Not to be confused with Centripetal force. Classical mechanics Newton s Second Law …   Wikipedia

  • Continuum mechanics — Continuum mechanics …   Wikipedia

  • Kinematics — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.