- Эйлер Леонард
- Эйлер (Euler) Леонард [4(15).4.1707, Базель, Швейцария, ‒ 7(18).9.1783, Петербург], математик, механик и физик. Род. в семье небогатого пастора Пауля Эйлера. Образование получил сначала у отца (который в молодости занимался математикой под рук. Я. Бернулли), а в 1720‒24 в Базельском университете, где слушал лекции по математике И. Бернулли.
Э. участвовал во многих направлениях деятельности Петербургской АН. Он читал лекции студентам академического университета, участвовал в различных технических экспертизах, работал над составлением карт России, написал общедоступное «Руководство к арифметике» (нем. изд. 1738‒40, рус. пер. ч. 1‒2, 1740). По специальному поручению академии Э. подготовил к печати «Морскую науку» (ч. 1‒2, 1749)‒ фундаментальный труд по теории кораблестроения и кораблевождения.
В 1741 Э. принял предложение прусского короля Фридриха II переехать в Берлин, где предстояла реорганизация АН. В Берлинской АН Э. занял пост директора класса математики и член правления, а после смерти её первого президента П. Л. Мопертюи несколько лет (с 1759) фактически руководил академией. За 25 лет жизни в Берлине он подготовил около 300 работ, среди них ряд больших монографий.
Живя в Берлине, Э. не переставал интенсивно работать для Петербургской АН, сохраняя звание её почётного члена. Он вёл обширную научную и научно-организационную переписку, в частности переписывался с М. В. Ломоносовым, которого высоко ценил. Э. редактировал математический отдел русского академического научного органа, где опубликовал за это время почти столько же статей, сколько в «Мемуарах» Берлинской АН. Он деятельно участвовал в подготовке русских математиков; в Берлин командировались для занятий под его руководством будущие академики С. К. Котельников, С. Я. Румовский и М. Софронов. Большую помощь Э. оказывал Петербургской АН, приобретая для неё научную литературу и оборудование, ведя переговоры с кандидатами на должности в академии и т.д.
17(28) июля 1766 Э. вместе с семьей вернулся в Петербург. Несмотря на преклонный возраст и постигшую его почти полную слепоту, он до конца жизни продуктивно работал. За 17 лет вторичного пребывания в Петербурге им было подготовлено около 400 работ, среди них несколько больших книг. Э. продолжал участвовать и в организационной работе академии. В 1776 он был одним из экспертов проекта одноарочного моста через Неву, предложенного И. П. Кулибиным, и из всей комиссии один оказал широкую поддержку проекту.
Заслуги Э. как крупнейшего учёного и организатора научных исследований получили высокую оценку ещё при его жизни. Помимо Петербургской и Берлинской академий, он состоял членом крупнейших научных учреждений: Парижской АН, Лондонского королевского общества и других.
Одна из отличительных сторон творчества Э. ‒ его исключительная продуктивность. Только при жизни Э. было опубликовано около 550 его книг и статей (список трудов Э. содержит примерно 850 назв.). В 1909 Швейцарское естественнонаучное общество приступило к изданию полного собрания сочинений Э., которое завершено в 1975; оно состоит из 72 томов. Большой интерес представляет и колоссальная научная переписка Э. (около 3000 писем), до сих пор опубликована лишь частично.
Необыкновенно широк был круг занятий Э., охватывавших все отделы современной ему математики и механики, теорию упругости, математическую физику, оптику, теорию музыки, теорию машин, баллистику, морскую науку, страховое дело и т.д. Около 3/5 работ Э. относится к математике, остальные 2/5 преимущественно к её приложениям. Свои результаты и результаты, полученные другими, Э. систематизировал в ряде классических монографий, написанных с поразительной ясностью и снабженных ценными примерами. Таковы, например, «Механика, или Наука о движении, изложенная аналитически» (т. 1‒2, 1736), «Введение в анализ» (т. 1‒2, 1748), «Дифференциальное исчисление» (1755), «Теория движения твёрдого тела» (1765), «Универсальная арифметика» (т. 1‒2, 1768‒69), выдержавшая около 30 изданий на 6 языках, «Интегральное исчисление» (т. 1‒3, 1768‒70, т. 4, 1794) и др. В 18 в., а отчасти и в 19 в. огромную популярность приобрели общедоступные «Письма о разных физических и филозофических материях, писанные к некоторой немецкой принцессе...» (ч. 1‒3, 1768‒74), которые выдержали свыше 40 изданий на 10 языках. Большая часть содержания монографий Э. вошла затем в учебные руководства для высшей и частично средней школы. Невозможно перечислить все доныне употребляемые теоремы, методы и формулы Э., из которых только немногие фигурируют в литературе под его именем [см., например, Эйлера метод ломаных, Эйлера подстановки, Эйлера постоянная, Эйлера уравнение, Эйлера уравнения (в гидромеханике), Эйлера формулы, Эйлера функция, Эйлера числа в математике, Эйлера число, Эйлера ‒Маклорена формула, Эйлера ‒ Фурье формулы, Эйлерова характеристика, Эйлеровы интегралы, Эйлеровы углы].
Главным делом Э. как математика явилась разработка математического анализа. Он заложил основы нескольких математических дисциплин, которые только в зачаточном виде имелись или вовсе отсутствовали в исчислении бесконечно малых И. Ньютона, Г. В. Лейбница, Я. и И. Бернулли. Так, Э. первый ввёл функции комплексного аргумента («Введение в анализ», т. 1) и исследовал свойства основных элементарных функций комплексного переменного (показательные, логарифмические и тригонометрические функций); в частности, он вывел формулы, связывающие тригонометрические функции с показательной. Работы Э. в этом направлении положили начало теории функций комплексного переменного.
Э. явился создателем вариационного исчисления, изложенного в работе «Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума...» (1744). После работ Ж. Лагранжа Э. далее развил вариационное исчисление в «Интегральном исчислении» и ряде статей. Метод, с помощью которого Э. в 1744 вывел необходимое условие экстремума функционала ‒ уравнение Эйлера, явился прообразом прямых методов вариационного исчисления 20 в. Э. создал как самостоятельную дисциплину теорию обыкновенных дифференциальных уравнений и заложил основы теории уравнений с частными производными. Здесь ему принадлежит огромное число открытий: классический способ решения линейных уравнений с постоянными коэффициентами, метод вариации произвольных постоянных, выяснение основных свойств уравнения Риккати, интегрирование линейных уравнений с переменными коэффициентами с помощью бесконечных рядов, критерии особых решений, учение об интегрирующем множителе, различные приближённые методы и ряд приёмов решения уравнений с частными производными. Значит. часть этих результатов Э. собрал в своём «Интегральном исчислении».
Э. обогатил также дифференциальное и интегральное исчисление в узком смысле слова (например, учение о замене переменных, теорема об однородных функциях, понятие двойного интеграла и вычисление многих специальных интегралов). В «Дифференциальном исчислении» Э. высказал и подкрепил примерами убеждение в целесообразности применения расходящихся рядов и предложил методы обобщённого суммирования рядов, предвосхитив идеи современной строгой теории расходящихся рядов, созданной на рубеже 19 и 20 вв. Кроме того, Э. получил в теории рядов множество конкретных результатов. Он открыл т. н. формулу суммирования Эйлера ‒ Маклорена, предложил преобразование рядов, носящее его имя, определил суммы громадного количества рядов и ввёл в математику новые важные типы рядов (например, тригонометрические ряды). Сюда же примыкают исследования Э. по теории непрерывных дробей и других бесконечных процессов.
Э. является основоположником теории специальных функций. Он первым начал рассматривать синус и косинус как функции, а не как отрезки в круге. Им получены почти все классического разложения элементарных функций в бесконечные ряды и произведения. В его трудах создана теория гамма-функции. Он исследовал свойства эллиптических интегралов, гиперболических и цилиндрических функций, дзета-функции, некоторых тета-функций, интегрального логарифма и важных классов специальных многочленов.
По замечанию П. Л. Чебышева, Э. положил начало всем изысканиям, составляющим общую часть теории чисел, к которой относится свыше 100 мемуаров Э. Так, Э. доказал ряд утверждений, высказанных П. Ферма (см., например, Ферма малая теорема), разработал основы теории степенных вычетов и теории квадратичных форм, обнаружил (но не доказал) квадратичный закон взаимности (см. Квадратичный вычет) и исследовал ряд задач диофантова анализа. В работах о разбиении чисел на слагаемые и по теории простых чисел Э. впервые использовал методы анализа, явившись тем самым создателем аналитической теории чисел. В частности, он ввёл дзета-функцию и доказал т. н. тождество Э., связывающее простые числа со всеми натуральными.
Велики заслуги Э. и в других областях математики. В алгебре ему принадлежат работы о решении в радикалах уравнений высших степеней и об уравнениях с двумя неизвестными, а также т. н. тождество Э. о четырёх квадратах. Э. значительно продвинул аналитическую геометрию, особенно учение о поверхностях 2-го порядка. В дифференциальной геометрии он детально исследовал свойства геодезических линий, впервые применил натуральные уравнения кривых, а главное, заложил основы теории поверхностей. Он ввёл понятие главных направлений в точке поверхности, доказал их ортогональность, вывел формулу для кривизны любого нормального сечения, начал изучение развёртывающихся поверхностей и т.д.; в одной посмертно опубликованной работе (1862) он частично предварил исследования К. Ф. Гаусса по внутренней геометрии поверхностей. Э. занимался и отд. вопросами топологии и доказал, например, важную теорему о выпуклых многогранниках. Э.-математика нередко характеризуют как гениального «вычислителя». Действительно, он был непревзойдённым мастером формальных выкладок и преобразований, в его трудах многие математические формулы и символика получили современный вид (например, ему принадлежат обозначения для е и p). Однако Э. был не только исключительной силы «вычислителем». Он внёс в науку ряд глубоких идей, которые ныне строго обоснованы и служат образцом глубины проникновения в предмет исследования.
По выражению П. С. Лапласа, Э. явился учителем математиков 2-й половины 18 в. От его работ непосредственно отправлялись в разнообразных исследованиях П. С. Лаплас, Ж. Л. Лагранж, Г. Монж, А. М. Лежандр, К. Ф. Гаусс, позднее О. Коши, М. В. Остроградский, П. Л. Чебышев и др. Русские математики высоко ценили творчество Э., а деятели чебышевской школы видели в Э. своего идейного предшественника в его постоянном чувстве конкретности, в интересе к конкретным трудным задачам, требующим развития новых методов, в стремлении получать решения задач в форме законченных алгоритмов, позволяющих находить ответ с любой требуемой степенью точности.
Соч.: Opera omnia... Series 1 ‒ Opera mathematica, v. 1‒29, Lausannae, 1911‒56, Series 2 ‒ Opera mechanica et astronomica, v. 1‒30, В.‒ Lpz., 1912‒74, Series 3‒Opera physica, Miscellanae epistolae, v. 1‒12, Lausannae, 1911‒73, Series 4‒Commercium epistolicum, v. 1, 1975; в рус. пер.‒ Универсальная арифметика, т. 1‒2, СПБ, 1768‒ 1769; Полное умозрение строения и вождения кораблей, сочиненное в пользу учащихся навигации..., СПБ, 1778; Введение в анализ бесконечных, т. 1‒2, М., 1961; Метод нахождения кривых линий, обладающих свойствами максимума, либо минимума, или решение изопериметрической задачи, взятой в самом широком смысле, М.‒Л., 1934; Основы динамики точки, М.‒ Л., 1938; Новая теория движения Луны, Л., 1934; Дифференциальное исчисление, М.‒ Л., 1949; Интегральное исчисление, т. 1‒3, М., 1956‒1958; Избранные картографические статьи, М., 1959.
Лит.: Erneström G., Verzeichnis der Schriften Leonard Eulers, Lfg 1‒2, Lpz., 1910‒13 (Jahresbericht der Deutschen Mathematiker‒Vereinigung. Ergänzungsband 4, Lfg 1‒2) [лит.]; Fuss N., Eloge de monsieur Léonard Euler..., St. Pb., 1783 (лит.); в рус. пер.‒ Похвальная речь покойному Леонарду Эйлеру..., в кн.: Академические сочинения, выбранные из первого тома Деяний Академии наук, под заглавием: Nova Acta Academiae scientiarum imperialis Petropolitanae, ч. 1, СПБ, 1801; Симонов Н. И., Прикладные методы анализа у Эйлера, М., 1957; Леонард Эйлер. Сб. ст., М., 1958; Рукописные материалы Л. Эйлера в Архиве Академии наук СССР, т. 1, М.‒Л., 1962; Юшкевич А. П., История математики в России до 1917 года, М., 1968.
По материалам одноимённой статьи из 2-го издания БСЭ.
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.