МЕЛЛИНА ПРЕОБРАЗОВАНИЕ — интегральное преобразование, переводящее кусочно непрерывную ф цию 1(х )в ф цию аналитическую в полосе где положит, числа s1 и s2 находят из условия сходимости интегралов Обратное M. п. даётся ф лой M. п. введено P. Я … Физическая энциклопедия
МЕЛЛИНА ПРЕОБРАЗОВАНИЕ — одно из интегральных преобразований. Оно определяется формулой сводится к Лапласа преобразованию подстановкой . М. п. применяется к решению определенного класса плоских задач на гармония, функции в секто риальной области, задач теории упругости и … Математическая энциклопедия
Преобразование Фурье — Преобразование Фурье операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … … Википедия
Преобразование Радона — интегральное преобразование функции многих переменных, родственное преобразованию Фурье. Впервые введено в работе австрийского математика Иоганна Радона 1917 го года[1]. Важнейшее свойство преобразования Радона обратимость, то есть возможность… … Википедия
Преобразование Гегенбауэра — Преобразование Гегенбауэра интегральное преобразование функции : где многочлены Гегенбауэра. Если функция разлагается в обобщенный ряд Фурье по многочленам Гегенбауэра, то им … Википедия
Преобразование Лапласа — Преобразование Лапласа интегральное преобразование, связывающее функцию комплексного переменного (изображение) с функцией вещественного переменного (оригинал). С его помощью исследуются свойства динамических систем и решаются… … Википедия
Преобразование Хенкеля — В математике, преобразование Ханкеля порядка ν функции f(r) задаётся формулой: где Jν функция Бесселя первого рода порядка ν и ν ≥ −1/2. Обратным преобразованием Ханкеля функции Fν(k) называют следующее выражение: которое можно проверить с… … Википедия
Преобразование Ханкеля — В математике, преобразование Ханкеля порядка ν функции f(r) задаётся формулой: где Jν функция Бесселя первого рода порядка ν и ν ≥ −1/2. Обратным преобразованием Ханкеля функции Fν(k) называют следующее выражение: которое можно… … Википедия
Преобразование Ганкеля — В математике, преобразование Ханкеля порядка ν функции f(r) задаётся формулой: где Jν функция Бесселя первого рода порядка ν и ν ≥ −1/2. Обратным преобразованием Ханкеля функции Fν(k) называют следующее выражение: которое можно проверить с… … Википедия
Фурье преобразование — Преобразование Фурье операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … … Википедия