Многоугольник

Многоугольник
В элементарной геометрии М. называется фигура, ограниченная прямыми линиями, называемыми сторонами. Точки, в которых стороны пересекаются, называются вершинами. Число вершин равняется числу сторон. Смотря по этому числу, М. называются: треугольниками, четырехугольниками и т. д. Прямые, соединяющие не соседние вершины М., называются диагоналями. Сумма внутренних углов М. равна двум прямым углам, повторенным. столько раз, сколько М. имеет углов без двух. Если стороны М. равны между собою и углы равны между собою, то такой М. называется правильным. М., все вершины которого лежат на окружности, называется вписанным. М., все стороны которого касательны к окружности, называется по отношению к этой окружности описанным. Сумма сторон М. называется его периметром. Перпендикуляр, опущенный из центра вписанного круга на одну из сторон правильного М., называется апофемою. Площадь правильного М. равна половине произведения периметра на апофему. В высшей геометрии простым п-угольником называется группа n точек плоскости и n прямых, соединяющих эти точки в данной последовательности. Полным п-угольником называется группа n точек плоскости со всеми прямыми, соединяющими эти точки. Другими словами: полный n-угольник состоит из простого n-угольника и из всех его диагоналей. Число сторон полного n угольника
равно [n(n—1)]/2.
Н. Делоне.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

Игры ⚽ Поможем написать реферат
Синонимы:

Смотреть что такое "Многоугольник" в других словарях:

  • многоугольник — многоугольник …   Орфографический словарь-справочник

  • МНОГОУГОЛЬНИК — (на плоскости) геометрическая фигура, ограниченная замкнутой ломаной линией, звенья которой называются сторонами многоугольника, а их концы вершинами многоугольника. По числу вершин различают треугольники, четырехугольники и т. д. Многоугольник… …   Большой Энциклопедический словарь

  • МНОГОУГОЛЬНИК — МНОГОУГОЛЬНИК, плоская геометрическая фигура с тремя или более сторонами, пересекающимися в трех или более точках (вершинах). Они называются в соответствии с числом сторон или вершин: ТРЕУГОЛЬНИК (трехсторонний); ЧЕТЫРЕХУГОЛЬНИК… …   Научно-технический энциклопедический словарь

  • многоугольник — полигон Словарь русских синонимов. многоугольник сущ., кол во синонимов: 12 • восьмиугольник (3) • …   Словарь синонимов

  • МНОГОУГОЛЬНИК — МНОГОУГОЛЬНИК, многоугольника, муж. (мат.). Плоская фигура, ограниченная тремя, четырьмя и т.д. прямыми линиями. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • МНОГОУГОЛЬНИК — МНОГОУГОЛЬНИК, а, муж. В математике: геометрическая фигура, ограниченная замкнутой ломаной линией. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Многоугольник — Многоугольник. В элементарной геометрии М. называется фигура,ограниченная прямыми линиями, называемыми сторонами. Точки, в которыхстороны пересекаются, называются вершинами. Число вершин равняется числусторон. Смотря по этому числу, М. называются …   Энциклопедия Брокгауза и Ефрона

  • многоугольник — (напр. сил) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN polygon …   Справочник технического переводчика

  • Многоугольник — У этого термина существуют и другие значения, см. Многоугольник (значения). Примеры многоугольников Многоугольник  это геометрическая фигура, обычно оп …   Википедия

  • многоугольник — а; м. Геометрическая фигура, ограниченная ломаной линией, звенья которой образуют более четырёх углов. Правильный м. Сторона многоугольника. * * * многоугольник (на плоскости), геометрическая фигура, ограниченная замкнутой ломаной линией, звенья… …   Энциклопедический словарь

  • Многоугольник —         замкнутая ломаная линия. Подробнее, М. линия, которая получается, если взять n любых точек A1, A2, ..., An и соединить прямолинейным отрезком каждую из них с последующей, а последнюю с первой (см. рис. 1, а). Точки A1, A2, ..., An… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»