- Гиперболический параболоид
-
см. Косая плоскость.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.
Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.
ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД — один из двух типов параболоидов … Большой Энциклопедический словарь
гиперболический параболоид — один из двух типов параболоидов. * * * ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД, один из двух типов параболоидов (см. ПАРАБОЛОИДЫ) … Энциклопедический словарь
Гиперболический параболоид — один из двух видов параболоидов (См. Параболоиды) … Большая советская энциклопедия
ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД — незамкнутая нецентральная поверхность второго порядка. В надлежащей системе координат (см. рис.) уравнение Г. п. имеет вид: Сечения Г. п. плоскостями, параллельными плоскостям и , являются параболами, а сечения плоскостями, параллельными… … Математическая энциклопедия
ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД — один из двух типов параболоидов … Естествознание. Энциклопедический словарь
Гиперболический параболоид — … Википедия
Гиперболический параболоид — форма крыши, имеющая двойную кривизну. (Архитектура: иллюстрированный справочник, 2005) … Архитектурный словарь
ПАРАБОЛОИД — ПАРАБОЛОИД, параболоида, муж. (см. парабола) (мат.). Поверхность второго порядка, не имеющая центра. Параболоид вращения (образуется вращением параболы вокруг ее оси). Эллиптический параболоид. Гиперболический параболоид. Толковый словарь Ушакова … Толковый словарь Ушакова
ПАРАБОЛОИД — ПАРАБОЛОИД, поверхность, получаемая при движении параболы, вершина которой скользит по другой, неподвижной параболе (с осью симметрии, параллельной оси движущейся параболы), тогда как ее плоскость, смещаясь параллельно самой себе, остается… … Современная энциклопедия
Параболоид — ― тип поверхности второго порядка. Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка. Канонические уравнения параболоида в декартовых координатах: если и одного… … Википедия