Сравнение, в математике

Сравнение, в математике
Говорят, что a сравнимо с b по модулю n, если a—b делится на n. Это обозначают так: ab (mod n). С. имеют много сходства с равенствами. Если f(x) целая функция с целыми коэффициентами и аb (mod n), то f(a) ≡ f(b) (mod n). Решить С. f(x) ≡ 0 (mod n) значит найти, какое число надо подставить вместо x для того, чтобы удовлетворить С. Если f(a) делится на n, то данному С. удовлетворяют и все числа сравнимые с a по модулю n. Условились, совокупность всех таких чисел называть одним решением данного С. Говорят, что f(x≡ 0 (mod ) n) имеет m решений, если ему удовлетворяют m чисел несравнимых между собой по модулю п.
Перечислим несколько теорем, относящихся к С.
С. первой степени axb (mod n) возможно, если b делится на d, наибольшего делителя чисел a и b, и имеет d решений. Если n простое число и a не делится на n, то
an—1 ≡ 1 (mod n) (теорема Фермата).
Если n простое число, то
1.2. 3...(n—1) ≡ 1 (mod n);
если же n — составное, то 1.2.3...(n—1)+1 не делится на n (теорема Вильсона). С. второй степени x2 q (mod p) при простом модуле возможно и имеет два решения, если q(p—1)/2 ≡ 1 (mod p); С. невозможно, если q(p—1)/2 ≡ —1 (mod p).
Эти два случая различаются при помощи особого вычисления, предложенного Лежандром и усовершенствованного Якоби. Вычисление выполняется очень быстро даже для больших значений p и q.
С. m-ой степени при простом модуле не может иметь более m решений (теорема Лагранжа).
С. xmq (mod p) при простом модуле возможно и имеет d решений, если q(p—1)/d ≡ 1 (mod p). Здесь d наибольший делитель чисел m и p—1.
Для всякого простого числа p существует такое число g, называемое его первообразным корнем, что числа g, g2, g3...gp—1 несравнимы между собой по модулю р.
Если gaа (mod p), то a называется указателем (index) числа a при основании g. Это обозначают так: a = ind a, причем основание подразумевается.
В "Теории С." П. Л. Чебышева приложена таблица указателей для всех простых чисел меньших 200. В сочинении C. G. J. Jacobi, "Canon Arithmeticus", эти таблицы доведены до 1000.
При помощи указателей решаются С. на основании теоремы:
ind (a b) ≡ ind a + ind b (mod p—1)
напоминающей свойства логарифмов.
Важнейшие сочинения, относящиеся к теории С.: Gauss, "Disquisitiones arithmeticae" (Лейпциг, 1801, "Gauss Werke", т. I; это сочинение издано в Берлине в 1889 г. в переводе на немецкий язык); Serret, "Cours d'algèbre supérieure" (т. II, секц. III, П., 1879); Dedekind, "Vorlesungen über Zahlentheorie von Lejeune-Dirichlet" (Брауншвейг, 1894; в 1899 г. в СПб. появился первый выпуск этого сочинения в переводе на русский язык); П. Л. Чебышев, "Теория С." (СПб., 1849; 2-е изд., СПб., 1879); Ю. В. Сохоцкий, "Высшая алгебра" (ч. II-я, СПб., 1888).
Д. С.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

Игры ⚽ Нужна курсовая?

Полезное


Смотреть что такое "Сравнение, в математике" в других словарях:

  • Сравнение в математике — Говорят, что a сравнимо с b по модулю n, если a b делится на n. Это обозначают так: a ≡ b (mod n). С. имеют много сходства с равенствами. Если f(x) целая функция с целыми коэффициентами и а ≡ b (mod n), то f(a) ≡ f(b) (mod n). Решить С. f(x) ≡ 0… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Сравнение — Сравнение  многозначный термин. Сравнение  процесс количественного или качественного сопоставления разных свойств (сходств, отличий, преимуществ и недостатков) двух объектов. Сравнение  выяснение, какой из двух объектов лучше в… …   Википедия

  • СРАВНЕНИЕ —         познават. операция, лежащая в основе суждений о сходстве или различии объектов; с помощью С. выявляются количеств. и качеств. характеристики предметов, классифицируется, упорядочивается и оценивается содержание бытия и познания. Сравнить… …   Философская энциклопедия

  • Сравнение по модулю натурального числа — В теории чисел сравнение[уточнить] по модулю натурального числа n задаваемое означенным числом отношение эквивалентности на множестве целых чисел, связанное с делимостью на него. Факторпространство по этому отношению называется «кольцом… …   Википедия

  • Сравнение по модулю — Сравнение[1] по модулю натурального числа n в теории чисел отношение эквивалентности на кольце целых чисел, связанное с делимостью на n. Факторкольцо по этому отношению называется кольцом вычетов. Совокупность соответствующих тождеств и… …   Википедия

  • Сравнение (философ.) — Сравнение, акт мышления, посредством которого классифицируется, упорядочивается и оценивается содержание бытия и познания; в С. мир постигается как «связное разнообразие». Акт С. состоит в попарном сопоставлении объектов с целью выявления их… …   Большая советская энциклопедия

  • Сравнение — I Сравнение (математическое)         соотношение между двумя целыми числами а и b, означающее, что разность а b этих чисел делится на заданное целое число т, называемое модулем С.; пишется а ≡ b (mod т). Например, 2 ≡ 8 (mod 3), т. к. 2 8 делится …   Большая советская энциклопедия

  • Характер (в математике) — Характер в математике, функция специального вида, применяемая в чисел теории и теории групп. В теории чисел Х. называют функцию c(n) ¹ 0, определённую для всех целых чисел n и такую, что: 1) c(nm) = c(n)c(m) для всех n и m, 2) существует… …   Большая советская энциклопедия

  • Класс вычетов — Сравнение по модулю натурального числа отношение эквивалентности на множестве целых чисел, связанное с делимостью. Оно даёт возможность работать с системой чисел, более простой чем целые числа, в которой значения «зацикливаются» (повторяются)… …   Википедия

  • Классы вычетов — Сравнение по модулю натурального числа отношение эквивалентности на множестве целых чисел, связанное с делимостью. Оно даёт возможность работать с системой чисел, более простой чем целые числа, в которой значения «зацикливаются» (повторяются)… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»