Электролитическая растворимость

Электролитическая растворимость
Нернст назвал электролитической растворимостью, в отличие от обыкновенной растворимости, случай, когда одновременно с растворением вещества происходят электрические явления. Типичный случай такой растворимости наблюдается для металлов. При погружении металла в какой-либо растворитель ничтожная часть его поверхности, лежащая далеко за пределами наших измерений, растворяется, вместе с тем, согласно закону Фарадея (см. Электрохимия), положительное электричество переходит в раствор, т. е. образуются положительные ионы металла (см. теорию Э. диссоциации), раствор электризуется положительными электричеством, в то же время сам металл — отрицательным. Если нет условий для разряда этой электризации, тогда упругость Э. растворения металла будет только поддерживать известную степень противоположной электризации раствора и металла, и дальнейшее растворение металла прекратится. Упругостью электролитического растворения металла Нернст назвал ту силу, которая гонит ионы металла в раствор; она вполне аналогична упругости пара испаряющейся жидкости. Если упругость растворения ничтожно малая величина, тогда достаточно того случайного количества ионов металлов, которое находится даже в самых чистых веществах, чтобы явление переменило свой знак, и тогда на металле осаждаются ионы, он электризуется положительно, а раствор отрицательно. Такие явления наблюдаются для благородных металлов: ртути, серебра, золота и др. Метод расчета величин упругости растворения изложен в статье Электрохимия. Относительные величины упругости электролитического растворения металлов в атмосферах:
Цинк.. ..... 1,0 х 1018
Кадмий.. ...2,7 х 106
Свинец.. ....1,1 х 10-3
Водород.. .. 1,0 х 10-3
Медь.. ...... 4,8 х 10-20
Ртуть.. .... 1,1 х 10-16
Серебро.. ... 1,3 х 10-17
Из таблицы видно, что упругость растворения металлов колеблется в громадных пределах, начиная с десятков триллионов атмосфер и кончая почти такими же долями атмосферного давления. Благодаря упругости электролитического растворения, на границе металла и электролита образуется своеобразный двойной слой, состоящий из слоя металла, заряженного одним электричеством, и слоя электролита, заряженного противоположным электричеством. Этот своеобразный конденсатор был назван Гельмгольцем: электролитический двойной слой. Условия для разряда этого двойного слоя те же, что и для конденсатора. Они наступят, когда отдельные слои, наэлектризованные противоположным электричеством, будут соединены проводниками. Однако в случае электролитического двойного слоя дело усложняется тем, что и на всяком другом металле, соединенном с первым и погруженном в электролит, образуется также двойной слой. Происходит как бы борьба между двумя электролитическими двойными слоями. Одолеет тот из них, металл которого обладает большей упругостью растворения. Металл с большей упругостью растворения погонит в раствор свои ионы; они приведут в движение ионы раствора, и у второго металла выделится водород или второй металл, смотря по тому, чья упругость растворения меньше. Очевидно, как в соединяющих металлических проводниках, так и электролитических проводниках будет происходит непрерывное движение электричества и будет наблюдаться гальванический ток. Рассмотрим для примера систему: цинк, погруженный в раствор цинкового купороса, отделенного пористой глиняной перегородкой от меди, погруженной в раствор серной кислоты. Если соединить проводником цинк и медь, цинк начнет растворяться, электризуясь отрицательно и электризуя своими положительными ионами раствор, в растворе катионы переместятся в сторону меди и у меди выделится ион водорода, отдаст меди положительный заряд, превратится из иона в обыкновенный газообразный водород, положительный же заряд меди, пройдя по проводникам, нейтрализует отрицательный заряд цинка. Следовательно, гальванический ток будет идти в металлических проводниках в общем случае от металла с меньшей упругостью растворения к металлу с большей упругостью растворения. Исключения могут наступить только когда противодействие ионов металла с большей упругостью растворения, находящихся в растворе, превзойдет противодействие ионов металла с меньшей упругостью растворения (см. анормальные элементы в ст. Электрохимия). Явление электролитического растворения металла должно зависеть не только от величины силы, заставляющей металл растворяться, но также и от концентрации уже находящихся в растворе его ионов, подобно тому как испарение жидкости зависит от насыщенности её парами окружающего ее пространства (см. подр. Электрохимия, концентрационные элементы). Еще в 1830 г. Де-Ла-Рив указал что растворение металлов происходит благодаря образованию местных гальванических токов. В одной точке металл растворяется, в растворе же проходит гальванический ток к ближайшей благоприятной точке металла, у которой и выделяется водород. Такими благоприятными точками для выделения водорода должно считать ничтожные примеси других металлов или угля к первому металлу. Явление происходит, следовательно, точно так же, как и в случае двух отдельных металлов, только в значительно меньшем масштабе. Достаточно взглянуть на изъеденную поверхность растворяющегося в серной кислоте цинка, чтобы согласиться с Де-Ла-Ривом. В связи с таким объяснением находится известный факт, что чем цинк чище, тем он труднее растворяется в слабой серной кислоте. Так что даже при изучения скорости растворения цинка в кислотах, цинк заведомо предварительно сплавляют с небольшим количеством свинца, чтобы явление происходило регулярно. Та же цель достигается при добывании водорода из цинка и серной кислоты прибавлением к серной кислоте медного купороса. Данные о скоростях растворения металлов показывают ясную зависимость скорости растворения металла от электропроводности кислоты. Эта зависимость впервые точно формулирована русским ученым Каяндером. Все это говорит в пользу теории Де-Ла-Рива. Теорией Де-Ла-Рива должно объяснить и выделение из раствора более благородного металла менее благородным, напр. ртути цинком.
Вл. Кистяковский.

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон. 1890—1907.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Электролитическая растворимость" в других словарях:

  • РАСТВОРИМОСТЬ — РАСТВОРИМОСТЬ, концентрация растворенного вещества в насыщенном растворе, т. е. в растворе, находящемся в равновесии с тем же веществом в виде отдельной фазы. Р. газов. В случае соприкосновения жидкости с газовой фазой Р. газа обнаруживает очень… …   Большая медицинская энциклопедия

  • Электролитическая диссоциация — или ионизация (литер. Svante Arrhenius, Ueber die Dissociation der in Wasser gelösten Stoffe , Zeitschr. für physikalische Chemie , 1887; Sv. Arrhenius, La dissociation électrolytique des solutions. Rapport au Congrès internat. à Paris 1900 ; Max …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электрохимия* — Содержание: Введение. Историческая справка. Обозначения, принятые в Э. Основные законы и принципы. Перенос ионов. Электропроводность растворов. Электровозбудительная сила. Переход химической энергии в электрическую. Классификация гальванических… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электрохимия — Содержание: Введение. Историческая справка. Обозначения, принятые в Э. Основные законы и принципы. Перенос ионов. Электропроводность растворов. Электровозбудительная сила. Переход химической энергии в электрическую. Классификация гальванических… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электролитический двойной слой — см. Электролитическая растворимость …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электростенолиз — При прохождении тока через капиллярные отверстия, наполненные раствором некоторых солей тяжелых металлов, на стеклянных стенках капилляров оседает металл соли. Это явлением, открытое А. К. Беккерелем, было тщательно изучено Брауном в 1891 г. и… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Эндосмос — Разделение или смешение жидкостей при посредстве оболочек, пропускающих хотя бы одну из них, получило название Э. До самого последнего времени при изучении Э. не отличали трех возможных случаев смешения. Первый случай, когда стенки капиллярных… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Химия — Первоначальное значение и происхождение этого слова неизвестно; возможно, что оно просто старое название северного Египта, и тогда наука Chemi значит египетская наука; но так как Chemi, кроме Египта, обозначало еще черный цвет, a μελάνοσις… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Термохимия — отдел химии, занимающийся превращениями внутренней энергии тел в тепло при химических процессах. Почти каждая химическая реакция связана с тем или иным тепловым эффектом: химическое превращение сопровождается или выделением, или поглощением тепла …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Электрохимический анализ* — Под Э. анализом должно подразумевать: применение явлений, наблюдаемых при прохождении тока через раствор электролита, к качественному открытию какого либо вещества или к определению его количества в растворе, другими словами, в этом случае задачи …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»