semiregular design

  • 1Semiregular polyhedron — A semiregular polyhedron is a polyhedron with regular faces and a symmetry group which is transitive on its vertices. Or at least, that is what follows from Thorold Gosset s 1900 definition of the more general semiregular polytope. [Thorold… …

    Wikipedia

  • 2List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …

    Wikipedia

  • 3Convex uniform honeycomb — The alternated cubic honeycomb is one of 28 space filling uniform tessellations in Euclidean 3 space, composed of alternating yellow tetrahedra and red octahedra. In geometry, a convex uniform honeycomb is a uniform tessellation which fills three …

    Wikipedia

  • 4Snub cube — (Click here for rotating model) Type Archimedean solid Uniform polyhedron Elements F = 38, E = 60, V = 24 (χ = 2) Faces by sides (8+24){3}+6{4} …

    Wikipedia

  • 5Polyhedron — Polyhedra redirects here. For the relational database system, see Polyhedra DBMS. For the game magazine, see Polyhedron (magazine). For the scientific journal, see Polyhedron (journal). Some Polyhedra Dodecahedron (Regular polyhedron) …

    Wikipedia

  • 6Snub dodecahedron — (Click here for rotating model) Type Archimedean solid Uniform polyhedron Elements F = 92, E = 150, V = 60 (χ = 2) Faces by sides (20+60 …

    Wikipedia

  • 7Truncated square tiling — Type Semiregular tiling Vertex configuration 4.8.8 Schläfli symbol t0,1{4,4} t …

    Wikipedia

  • 8Deltoidal trihexagonal tiling — Type Dual semiregular tiling Faces kite Face configuration V3.4.6.4 …

    Wikipedia

  • 9Cuboctahedron — (Click here for rotating model) Type Archimedean solid Uniform polyhedron Elements F = 14, E = 24, V = 12 (χ = 2) Faces by sides 8{3}+6{4} …

    Wikipedia

  • 10Hypercube — This article is about the mathematical concept. For the film, see Cube 2: Hypercube. Perspective projections Cube (3 cube) Tesseract (4 cube) In geometry, a hypercube is an n dimensional analogue of a …

    Wikipedia