Теория узлов

Теория узлов

Теория узлов — изучение вложений одномерных многообразий в трёхмерное евклидово пространство или в сферу S^3. В более широком смысле предметом теории узлов являются вложения сфер в многообразия и вообще вложения многообразий.

Содержание

Основные понятия теории узлов

Вложение (чаще — его образ) несвязной суммы \mu экземпляров окружности в \mathbb{R}^3 или S^3 называется зацеплением кратности \mu.

Зацепление кратности \mu=1 называется узлом.

Узлы, составляющие данное зацепление, называются его компонентами.

Объемлемо-изотопические классы зацеплений называются типами зацеплений. Зацепления одного типа называются эквивалентными.

Зацепление, состоящее из некоторых компонент зацепления L, называется его частичным зацеплением.

Говорят, что зацепление править] Некоторые типы зацеплений

  • Зацепление «0,\;0,\;\ldots,\;0», лежащее в плоскости в \mathbb{R}^3, называется тривиальным.
  • Зацепление называется брунновым, если распадается каждое его частичное зацепление, кроме него самого.
  • Наиболее изучены кусочно линейные зацепления. Рассмотрение гладких или локально плоских топологических вложений в \mathbb{R}^3 приводит к теории совпадающей с кусочно линейной.
  • Кроме плоскости всякое зацепление можно расположить на стандартно вложенной в \mathbb{R}^3 замкнутой поверхности. Например, зацепление можно расположить на незаузленном торе или кренделе, тогда такое зацепление будет называться соответственно торическим, или крендельным.
  • Зацепление, лежащее на границе трубчатой окрестности узла называется обмоткой узла k. Зацепление, которое можно получить многократным взятием обмоток, начиная с тривиального узла, называется трубчатым, или сложным кабельтовым.

Задание зацеплений

Обычно зацепления задаются посредством так называемых диаграмм узлов и зацеплений. Этот способ тесно связан с понятием кос. Если в косе из 2n нитей соединить вверху и внизу по n пар соседних концов отрезками, то получится зацепление, называемое 2n-сплетением.

Другой способ конструирования зацеплений из кос состоит в замыкании кос. Если между двумя параллельными плоскостями \Pi_1 и \Pi_2 в \mathbb{R}^3 взять 2m ортогональных им отрезков и соединить их концы попарно m дугами в \Pi_1 и m дугами в \Pi_2 без пересечений, то сумма всех дуг и отрезков даст зацепление. Зацепление, допускающее такое представление, называется зацеплением с m мо­стами.

Таблица узлов

Выдержка из таблицы узлов.

Для классификации узлов составляют таблицы узлов[1] — перечень диаграмм всех простых узлов, допускающих проекции на плоскость.

Для облегчения поиска и унификации узлы имеют стандартное обозначение: первая цифра указывает число двойных точек, а вторая (расположенная в индексе) — порядковый номер узла.

Помимо стандартного обозначения несколько простейших узлов имеют специальные названия. Например:

Для многокомпонентных узлов в верхнем индексе указывается количество компонентов: например, зацепление двух колец имеет символическую запись 2^2_1.

Инварианты узлов и зацеплений

Практически единственным способом доказательства неизоморфности узлов является применение инвариантов: сопоставляемых узлу (или зацеплению) чисел или выражений, не изменяющихся при его изотопии. Достаточным для доказательства неизоморфности тогда является нахождение инварианта, значения которого на данных двух узлах или зацеплениях различны. (Стоит отметить, что совпадение одного или нескольких инвариантов на двух узлах их изоморфности ещё не доказывает.)

Чаще всего, инварианты определяют только для ручных узлов (и зацеплений), строя их по диаграмме узла; проверка инвариантности в этом случае сводится к проверке, что построенный объект сохраняется при всех трёх преобразованиях Рейдемейстера.

Некоторые инварианты узлов и зацеплений:

  • Число связных компонент
  • Фундаментальная группа дополнения к зацеплению
  • Число трёхцветных раскрасок — число способов раскрасить диаграмму зацепления в три цвета так, чтобы в каждом перекрёстке либо встречались все три цвета, либо только один
  • Полином Александера
  • Полином Конвея
  • Полином HOMFLY
  • Полином Джонса
  • Инварианты Васильева (со значениями в пространстве хордовых диаграмм).

Приложения теории узлов

Значение теории узлов для изучения трёх­мерных многообразий определяется, прежде всего, тем, что всякое замкнутое ориентируемое трёхмерное многообразие можно представить в виде накрывающего сферы S^3, разветвлённого над некоторым зацеплением (теорема Александера). Более того, всякое ориентируемое связное трёхмерное многообразие рода 1 (то есть линзовое пространство) гомеоморфно двулистному разветвлённому накрывающему некоторого зацепления с двумя мостами, и зацепления с двумя мостами эквивалентны тогда и только тогда, когда гомеоморфны их двулистные разветвлённые накрывающие. Этот факт полезен как для описания трёхмерных многообразий, так и для классификации узлов.

Другим важным средством, доставляемым теорией узлов для изучения трёхмерных многообразий, является исчисление оснащённых зацеплений Кёрби.

Помимо этих и многих других применений теории узлов в топологии, её приложения включают также изучение особенностей плоских алгебраических кривых, а в многомерной ситуации — изолированных особенностей комплексных гиперповерхностей, гладкие структуры на сферах, конструирование динамических систем и слоений. Имеются попытки применить теорию узлов в символической динамике[2] и математической теории турбулентности[3].

История теории узлов

По-видимому, К. Гаусс был первым, кто рассматривал узел как математический объект. Он считал, что анализ явлений заузливания и зацепливания является одной из основных задач «geometris situs». Сам К. Гаусс мало написал об узлах и зацеплениях, однако его ученик И. Листинг (J. Listing) посвятил узлам значительную часть своей монографии.

К концу XIX века П. Тэт (P. Tait) и К. Литл (С. Little) составили таблицы простых узлов, имеющих не более 10 пересечений, и таблицы альтернирующих простых узлов, имеющих не более 11 пересечений.

В 1906 году Г. Титце (Н. Tietze) впервые применил фундаментальную группу для доказательства нетривиа­льности узла. В 1927 году Дж. Александер (J. Alexander) и Л. Бриге (L. Briggs), используя коэффициенты кручения гомологии двулистных и трёхлистных разветвлённых циклических накрывающих, различили все табулированные узлы с 8 пересечениями и все узлы, за исключением трёх пар, с 9 пересечениями.

В 1928 году Александер предлагает многочлен, названный его именем, но и с его помощью не удалось убедиться в различности всех 84 узлов, имеющих не более 9 пересечений. Этот последний шаг сделал К. Рейдемейстер (К. Reidemeister), рассмотревший коэффициенты зацепления в диэдральных разветвлённых накрывающих.

См. также

Примечания

  1. http://users.omskreg.ru/~lanin/ktable.htm
  2. Franks J. M. Annals of Mathematics. — 1981. — v. 113. — p. 529—552.
  3. Birman J. S., Williams R. F. Topology. — 1983. — v. 22. — p. 47—82.

Литература


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Теория узлов" в других словарях:

  • Восьмёрка (теория узлов) — У этого термина существуют и другие значения, см. Восьмёрка. Восьмёрка, четырёхкратный узел или узел Листинга ― один из простейших нетривиальных узлов. Восьмёрка обозначается символом . Впервые рассмотрен Листингом в 1847 году. См. также… …   Википедия

  • Восьмерка (теория узлов) — Восьмёрка, четырёхкратный узлел или узел Листинга ― один из простейших нетривиальных узлов. Восьмёрка обозначается символом 41. Впервые рассмотрен Листингом в 1847 году. См. также Тривиальный узел Трилистный узел Ссылки …   Википедия

  • Теория кос — Пример косы с тремя дугами. Теория кос  раздел топологии и алгебры, изучающий косы и группы кос, составленные из их классов эквивалентности …   Википедия

  • Теория Черна — Саймонса — Теория Черна Саймонса  это трехмерная топологическая квантовая теория поля типа Шварца, предложенная Эдвардом Виттеном. Теории получила такое название, так как её действие пропорционально форме Черна Саймонса. В физике конденсированного… …   Википедия

  • Теория Черна — Саймонса  это трехмерная топологическая квантовая теория поля типа Шварца, предложенная Эдвардом Виттеном. Теории получила такое название, так как её действие пропорционально форме Черна Саймонса. В физике конденсированного состояния теория… …   Википедия

  • Теория механизмов и машин — Теория машин и механизмов (ТММ) это научная дисциплина об общих методах исследования, построения, кинематики и динамики механизмов и машин и о научных основах их проектирования. Содержание 1 История развития дисциплины 2 Основные понятия …   Википедия

  • Теория перколяции — Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии …   Википедия

  • УЗЛОВ И ЗАЦЕПЛЕНИЙ ГРУППЫ — класс групп, изоморфных фундаментальным группам дополнительных пространств зацеплений kкоразмерности 2 в сферах Sn. Для случая группы G гладких зацеплений кратности выделяются такими свойствами [3]: 1) G порождается как свoй нормальный делитель… …   Математическая энциклопедия

  • УЗЛОВ КОБОРДИЗМ — (правильнее бордизм узлов, см. Бордизм) отношение эквивалентности на множестве узлов, более слабое, чем изотопич. тип. Два гладких n мерных узла и наз. кобордантными, если существует гладкое ориентированное (n+1) мерное подмногообразие V… …   Математическая энциклопедия

  • Теория графов — Граф с шестью вершинами и семью рёбрами Теория графов  раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество вершин (узлов), соединённых рёбрами. В строго …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»