Аллотропия углерода

Аллотропия углерода
Восемь аллотропов углерода:
a) Алмаз,
b) Графит,
c) Лонсдейлит,
d) C60 (фуллерены),
e) C540,
f) C70,
g) Аморфный углерод и
h) однослойная углеродная нанотрубка.

Углерод — вещество с самым[источник не указан 804 дня] большим числом аллотропических модификаций (более 8 уже обнаружены).

Аллотропные модификации углерода по своим свойствам наиболее радикально отличаются друг от друга, от мягкого к твёрдому, непрозрачного к прозрачному, абразивного к смазочному, недорогого к дорогому. Эти аллотропы включают аморфные аллотропы углерода (уголь, сажа), нанопена, кристаллические аллотропы — нанотрубка, алмаз, фуллерены, графит, лонсдейлит и церафит.

Содержание

Классификация

Классификация аллотропов углерода по характеру химической связи между атомами:

Алмаз

Алмаз является одним из наиболее известных аллотропов углерода, чья твёрдость и высокая степень рассеивания света делает его полезным в промышленном применении и в ювелирных изделиях. Алмаз — самый твёрдый известный природный минерал, что делает его отличным абразивом и позволяет использовать для шлифовки и полировки. В природной среде нет ни одного известного вещества, способного поцарапать даже мельчайший фрагмент алмаза.

Рынок алмазов промышленного класса несколько отличен от рынков других драгоценных камней. Используемые в промышленности алмазы ценятся главным образом за их твёрдость и теплопроводность, из-за чего другие геммологические характеристики алмазов, в том числе чистота и цвет, по большей части излишни. Это помогает объяснить, почему 80 % добываемых алмазов (что эквивалентно примерно 100 млн. каратам или 20000 кг в год), непригодно для использования в качестве драгоценных камней и известны как борт, предназначенные для промышленного использования. В дополнение к добываемым алмазам, находят промышленное применение и искусственные синтетические алмазы, используемые практически сразу же после их изобретения в 1950 г., а ещё 400 миллионов каратов (80000 кг) синтетических алмазов выпускаются ежегодно для промышленного использования — почти в четыре раза больше массы природных алмазов, добытых за тот же период.

Основным промышленным применением алмазов является резка, сверление (в наконечниках свёрл и буров), шлифовка (резка алмазными гранями) и полировка. Большинство используемых в этих технологиях алмазов не требует крупных образцов; фактически, большинство алмазов качества драгоценных камней, могут использоваться в промышленности. Алмазы вставляются в наконечники буров или режущие кромки пилы или измельчаются в порошок для использования процессах шлифования и полирования. Специализированное применение включает в себя использование в лабораториях в качестве сдерживающих веществ при экспериментах с высоким давлением, в высокопроизводительных подшипниках и ограниченное применение в специализированных окнах.

С продолжающимся увеличением в производстве синтетических алмазов, их будущее применение становится более осуществимым. Накопление большого запаса — это возможность использовать алмазы в качестве полупроводников при изготовлении микрочипов или использовать для поглощения тепла в электронике. Значительные достижения в исследованиях в Японии, Европе и Соединённых Штатах позволяют использовать возможности, предоставляемые уникальными свойствами алмазного вещества, в сочетании с повышением качества и количества, обеспечиваемыми производителями синтетических алмазов.

Каждый атом углерода в алмазе ковалентен с четырьмя другими атомами углерода в тетраэдре. Эти тетраэдры вместе образуют трёхмерную сеть из слоёв шестичленных колец атомов. Эта устойчивая сеть ковалентных связей и трёхмерное распределение связей является причиной такой твёрдости алмазов.

Графит

Графит (назван Абрахамом Готтлобом Вернером в 1789 г, (с греческого графен — «тянуть/писать», использовался в карандашах) — один из самых обычных аллотропов углерода. Характеризуется гексагональной слоистой структурой. Встречается в природе. Твердость по шкале Мооса 1. Его плотность — 2.3, она меньше чем у алмаза. Приблизительно при 700 °C горит в кислороде, образовывая углекислый газ. По химической активности более реакционен чем алмаз. Это связано с проникновением реагентов между гексагональными слоями атомов углерода в графите. Не взаимодействует с обычными растворителями, кислотами или расплавленными щелочами. Однако, хромовая кислота окисляет его до углекислого газа. Получают нагреванием смеси пека и кокса при 2800 °C; из газообразных углеводородов при 1400—1500 °C при пониженных давлениях с последующим нагреванием образовавшегося пироуглерода при 2500−3000 °C и давлении около 50 МПа с образованием пирографита. В отличие от алмаза, графит обладает электропроводностью и широко применяется в электротехнике. Графит является самой устойчивой формой углерода при стандартных условиях. Поэтому в термохимии он принят за стандартное состояние углерода. Применяется для изготовления плавильных тиглей, футеровочных плит, электродов, нагревательных элементов, твердых смазочных материалов, наполнителя пластмасс, замедлителя нейтронов в ядерных реакторах, стержней карандашей, при высоких температурах и давлениях (более 2000 °C и 5 ГПа) для получения синтетического алмаза.

Порошок графита используется как сухая смазка. Однако в вакууме он заметно теряет смазочные свойства, это связано с тем, что смазочные свойства графита связаны с адсорбрцией воздуха и воды между слоями в графите, в отличие от других слоистых сухих смазок, типа дисульфида молибдена. При большом количестве кристаллографических дефектов, которые связывают слои в структуре, графита, он также теряет смазывающие свойства и становится подобным пиролитическому графиту.

Природные и кристаллические графиты редко используются в чистой форме из-за их скалываемости, хрупкости и противоречивых механических свойств.

Его чистые структурно изотропные синтетические формы, как например пиролитический графит и углеродистые графитовые волокна, представляют чрезвычайно прочный, огнеупорный (до 3000 °C) материал, используемый для защиты носовых конусов ракет, в конструкциях сопел твердотопливных двигателей ракеты, высокотемпературных реакторов, тормозных колодок и электрических моторных щеток.

Вспучивающиеся или растяжимые графиты используются в печах нагрева для герметизации ее элементов. В процессе нагрева графит вспучивается (расширяется и обжигается) и герметизирует области контакта. Типичная температура начала расширения (область температур) — между 150 и 300 °C. Электропроводность графита связана с делокализацией электронов пи — связей выше и ниже плоскостей расположения атомов углерода. В отличие от алмаза, в котором все четыре внешних электрона каждого атома углерода 'локализованы' между атомами в ковалентной связи, в графите, каждый атом связан ковалентной связью только с 3 из его 4 внешних электронов. Поэтому каждый атом углерода вносит один электрон в делокализованную систему электронов. Эти электроны находятся в зоне проводимости. Однако электропроводность графита ориентирована по поверхности слоев. Поэтому графит проводит электричество по плоскости слоя атомов углерода, но не проводит в направлении под прямым углом к плоскости.

Другие возможные формы

  • Чаоит — минерал, который, как считают, сформирован под воздействием ударов метеоритов. Он описывается как несколько более твёрдый, чем графит, с отблеском от серого до белого цвета. Тем не менее, существование такого состояния углерода считается спорным.
  • Металлический углерод — теоретические исследования показали, что в фазовой диаграмме углерода в области очень высоких давлений есть области, где он металлический [1] Также показано, что в этих условиях углерод может стать сверхпроводящим при очень низкой температуре (4 кельвина) [2].
  • Диуглерод — метастабильные частицы С2

Примечания

  1. Углерод под экстремальным воздействием..  (англ.)  (Проверено 30 июня 2008)
  2. В России получена свехпроводимость алмаза  (англ.)  (Проверено 30 июня 2008)

См. также

Ссылки




Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Аллотропия углерода" в других словарях:

  • АЛЛОТРОПИЯ — (от греч. allos иной, и trepein обращать). Свойство некоторых химических веществ принимать различные формы, вместе с различными свойствами; напр., углерод, являющийся в виде алмаза, графита, угля. Словарь иностранных слов, вошедших в состав… …   Словарь иностранных слов русского языка

  • АЛЛОТРОПИЯ — (от алло... и греч. tropos поворот свойство), существование химических элементов в виде двух или более простых веществ. Может быть обусловлена образованием молекул с различным числом атомов (напр., кислород O2 и озон O3) либо кристаллов различных …   Большой Энциклопедический словарь

  • АЛЛОТРОПИЯ — АЛЛОТРОПИЯ, свойство некоторых химических элементов, позволяющее им существовать в двух или более различных физических формах. Каждая форма (называемая аллотропом) может иметь различные химические свойства, но способна превратиться и в другой… …   Научно-технический энциклопедический словарь

  • Аллотропия — Алмаз и графит аллотропические формы углерода, отличающиеся строением кристаллической решётки Аллотропия (от др. греч …   Википедия

  • аллотропия — и; ж. [от греч. allos другой и tropos поворот, направление]. Существование одного и того же химического элемента в виде двух или нескольких простых веществ, различных по строению и свойствам. ◁ Аллотропический, ая, ое. Графит и алмаз являются… …   Энциклопедический словарь

  • АЛЛОТРОПИЯ — существование химических элементов в двух или более молекулярных либо кристаллических формах. Например, аллотропами являются обычный кислород O2 и озон O3; в этом случае аллотропия обусловлена образованием молекул с разным числом атомов. Чаще… …   Энциклопедия Кольера

  • Аллотропия — I свойство некоторых химических простых тел (элементов) являться в двух или нескольких столь различных видоизменениях, что их можно принять за совершенно различные тела, если бы тождество их химической природы не было твердо установлено… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Аллотропия (дополнение к статье) — (хим.) понятие А. введено в науку Берцелиусом ( Jahresb. , 1841, стр. 13. L. A. , 49, 247 [1844]; ср. Изомерия) для обозначения изомерных видоизменений элементов; одновременно он предполагал, по видимому, применить его и к изомерии соединений,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • АЛЛОТРОПИЯ — (от алло... и греч. tr6pos поворот, свойство), существование хим. элементов в виде двух или более простых веществ. Может быть обусловлена образованием молекул с разл. числом атомов (напр., кислород О2 и озон Оз) либо кристаллов разл. модификаций… …   Естествознание. Энциклопедический словарь

  • Углерод — У этого термина существуют и другие значения, см. Углерод (значения). 6 Бор ← Углерод → Азот …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»