Вихревое движение

Вихревое движение

Вихревое движение — движение жидкости или газа, при котором мгновенная скорость вращения элементарных объёмов среды не равна нулю. Количественной мерой завихренности служит вектор ~{\omega = \operatorname{rot}~v}, где v — скорость жидкости; ω называют вектором вихря или просто завихренностью. Движение называется безвихревым или потенциальным, если ω = 0, в противном случае имеет место вихревое движение.

Векторное поле вихря удобно характеризовать некоторыми геометрическими образами. Вихревой линией называется линия, касательная к которой в каждой точке направлена по вектору вихря; совокупность вихревых линий, проходящих через замкнутую кривую, образует вихревую трубку. Поток вектора вихря через любое сечение вихревой трубки одинаков. Он называется интенсивностью вихревой трубки и равен циркуляции скорости \Gamma = \int_C v\,dl по произвольному контуру C, однократно охватывающему вихревую трубку[1].

За редким исключением, движение жидкости или газа почти всегда бывает вихревым. Так, вихревым является ламинарное течение в круглой трубе, когда скорость распределяется по параболическому закону, течение в пограничном слое при плавном обтекании тела и в следе за плохо обтекаемым телом. Вихревой характер носит любое турбулентное течение. В этих условиях выделение класса «вихревое движение» оказывается осмысленным, благодаря тому, что при преобладании инерционных сил над вязкими (при очень больших числах Рейнольдса) типична локализация завихрености в обособленных массах жидкости — вихрях или вихревых зонах.

Согласно классическим теоремам Гельмгольца, в предельном случае движения невязкой жидкости, плотность которой постоянна или зависит только от давления, в потенциальном силовом поле вихревые линии вморожены в среду, то есть в процессе движения они состоят из одних и тех же частиц жидкости — являются материальными линиями. Вихревые трубки при этом оказываются вмороженными в среду, а их интенсивность сохраняется в процессе движения. Сохраняется также циркуляция скорости по любому контуру, состоящему из одних и тех же частиц жидкости (теорема Кельвина). В частности, если при движении область, охватываемая данным контуром, сужается, то интенсивность вращательного движения внутри него возрастает. Это важный механизм концентрации завихренности, реализующийся при вытекании жидкости из отверстия в дне сосуда (ванны), при образовании водоворотов вблизи нисходящих потоков в реках и определяющий образование циклонов и тайфунов в зонах пониженного атмосферного давления в которые происходит подтекание (конвергенция) воздушных масс.

В жидкости, находящейся в состоянии покоя или потенциального движения, вихри возникают либо из-за нарушения баротонии, например образование кольцевых вихрей при подъёме нагретых масс воздуха — термиков, либо из-за взаимодействия с твердыми телами.

Если обтекание тела происходит при больших числах Re, завихренность порождается в узких зонах — в пограничном слое — проявлением вязких эффектов, а затем сносится в основной поток, где формируются отчетливо видимые вихри, некоторое время эволюционирующие и сохраняющие свою индивидуальность. Ососбенно эффектно это проявляется в образовании за плохообтекаемым телом регулярной вихревой дорожки Кармана. Вихреобразование в следе за плохообтекаемым телом определяет основная часть лобового сопротивления тела, а образование вихрей у концов крыльев летательных аппаратов вызывает дополнительное индуктивное сопротивление.

При анализе динамических вихрей и их взаимодействия с внешним безвихревым потоком часто используется модель сосредоточенных вихрей — вихревых нитей, представляющих собой вихревые трубки крошечной интенсивности, но бесконечно малого диаметра. Вблизи вихревой нити жидкость движется относительно нее по окружностям, причём скорость обратно пропорциональна расстоянию от нити, v = Г/2πr. Если ось нити прямолинейна, это выражение верно для любых расстояний от нити (потенциальный вихрь). В сечении нормальной плоскости это течение соответствует точечному вихрю. Система точечных вихрей представляет собой консервативную динамическую систему с конечным числом степеней свободы, во многом аналогичную системе взаимодействующих частиц. Сколь угодно малое возмущение первоначально прямолинейных вихревых нитей приводит к их искривлению с бесконечными скоростями. Поэтому в расчетах их заменяют вихревыми трубками конечной завихренности. Узкая область завихренности, разделяющая две протяженные области безвихревого движения, моделируется пеленой — поверхностью, выстланной вихревыми нитями бесконечно малой интенсивности, так, что суммарная их интенсивность на единицу длины по нормали к ним вдоль поверхности постоянна. Вихревая поверхность представляет собой поверхность разрыва касательных компонент скорости. Она неустойчива к малым возмущениям.

В вязкой жидкости происходит выравнивание — диффузия локализированных завихренностей, причем роль коэффициента диффузии играет кинематическая вязкость жидкости \nu\ . При этом эволюция завихренности определяется уравнением[2]

\frac{\partial\omega}{\partial t} = \operatorname{rot} (v\,\omega) + \nu \triangledown^2 \omega.

или[3]

\frac{\partial\omega}{\partial t} = (\omega\nabla) v + \nu \triangledown^2 \omega,

то есть быстрота изменения вектора ω определяется производной вектора v\ по направлению ω.

При больших числах Re движение турбулизируется, и диффузия завихренности определяется много большим коэффициентом эффективной турбулентной вязкости, не являющимся константой для жидкости и сложным образом зависящим от характера движения.

Примечания

  1. Здесь (имеется в виду  v\,dl) и ниже в статье произведение двух векторов без специального знака между ними означает скалярное произведение.
  2. Получаемым применением ротора к обеим частям уравнения Навье - Стокса.
  3. Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия. Главный редактор Г.П. Свищев. 1994. http://dic.academic.ru/dic.nsf/enc_tech/1824/%D0%92%D0%B8%D1%85%D1%80%D0%B5%D0%B2%D0%BE%D0%B5

Литература

  • Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. 6 изд., ч.1. — М., 1963 г.;
  • Седов Л. И. Механика сплошной среды, т.1-2, 4 изд. — М., 1983-84;
  • Лаврентьев М. А., Шабат Б. В. Проблемы гидродинамики и их математические модели, 2 изд. — М., 1977;
  • Бэтчелор Дж. Введение в динамику жидкости, пер. с англ. — М., 1973

См. также



Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Вихревое движение" в других словарях:

  • ВИХРЕВОЕ ДВИЖЕНИЕ — движение жидкости или газа, при к ром их малые элементы (ч цы) перемещаются не только поступательно, но и вращаются около нек рой мгновенной оси. Подавляющее большинство течений жидкости и газа, к рые происходят в природе или осуществляются в… …   Физическая энциклопедия

  • вихревое движение — турбулентное движение — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы турбулентное движение EN whirling… …   Справочник технического переводчика

  • ВИХРЕВОЕ ДВИЖЕНИЕ — движение жидкости (или газа), при котором их малые объемы перемещаются не только поступательно, но и вращаются около некоторой мгновенной оси (напр., смерчи, воронки в воде и т. д.) …   Большой Энциклопедический словарь

  • вихревое движение — Вращательное движение жидкости вокруг оси, либо в форме водоворотов в турбулентном течении реки, либо в форме вихрей в атмосфере …   Словарь по географии

  • ВИХРЕВОЕ ДВИЖЕНИЕ — ВИХРЕВОЕ ДВИЖЕНИЕ, завихрение или водоворот, наблюдаемый при движении текучей среды. В идеальной текучей среде завихрений не бывает из за отсутствия вязкости. Однако при исследовании реальных текучих сред они очень важны. В частности, завихрения …   Научно-технический энциклопедический словарь

  • вихревое движение — движение жидкости (или газа), при котором их малые объёмы перемещаются не только поступательно, но и вращаются около некоторой мгновенной оси (например, смерчи, воронки в воде и т. д.). * * * ВИХРЕВОЕ ДВИЖЕНИЕ ВИХРЕВОЕ ДВИЖЕНИЕ, движение жидкости …   Энциклопедический словарь

  • вихревое движение — sūkurinis judėjimas statusas T sritis fizika atitikmenys: angl. eddy motion; vortex motion vok. Wirbelbewegung, f rus. вихревое движение, n pranc. mouvement tourbillonnaire, m …   Fizikos terminų žodynas

  • Вихревое движение —         движение жидкости или газа, при котором их малые элементы (частицы) перемещаются не только поступательно, но и вращаются около некоторой мгновенной оси.          Подавляющее большинство течений жидкости и газа, которые происходят в… …   Большая советская энциклопедия

  • ВИХРЕВОЕ ДВИЖЕНИЕ — движение жидкости или газа, сопровождающееся вращением частиц среды (её элементарных объёмов) вокруг мгновенных осей, проходящих через эти частицы. Примерами В. д. являются ламинарное течение и турбулентное течение реальных (вязких) жидкостей и… …   Большой энциклопедический политехнический словарь

  • ВИХРЕВОЕ ДВИЖЕНИЕ — движение жидкости (или газа), при к ром их малые объёмы перемещаются не только поступательно, но и вращаются около нек рой мгновенной оси (напр., смерчи, воронки в воде и т. д.) …   Естествознание. Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»