Интеграл это:

Интеграл
Определённый интеграл как площадь фигуры

Интеграл функции — аналог суммы последовательности. Неформально говоря, (определённый) интеграл является площадью части графика функции (в пределах интегрирования), то есть площадью криволинейной трапеции.

Процесс нахождения интеграла называется интегрированием.

Согласно основной теореме анализа, интегрирование является операцией, обратной дифференцированию, чем помогает решать дифференциальные уравнения.

Существует несколько различных определений операции интегрирования, отличающиеся в технических деталях. Однако все они совместимы, то есть любые два способа интегрирования, если их можно применить к данной функции, дадут один и тот же результат. Наиболее простым является интеграл Римана.

Содержание

Типы интегралов

По области интегрирования

Интегралы, зависящие от параметров

Дифференцирование по параметру

Пусть задан интеграл вида

I(t) = \int\limits_{x_1(t)}^{x_2(t)}f(x,t)\mathrm dx.

В таком случае, производная по параметру t будет равна[1]

\frac{\mathrm dI}{\mathrm dt} = f(x_2,t)\frac{\mathrm dx_2}{\mathrm dt} - f(x_1,t)\frac{\mathrm dx_1}{\mathrm dt} + \int\limits_{x_1(t)}^{x_2(t)}\frac{\partial f}{\partial t}\mathrm dx.

История

Интеграл в древности

Интегрирование прослеживается ещё в древнем Египте, примерно в 1800 г. до н. э., Московский математический папирус демонстрирует знание формулы объёма усечённой пирамиды. Первым известным методом для расчёта интегралов является метод исчерпывания Евдокса (примерно 370 до н. э.), который пытался найти площади и объёмы, разрывая их на бесконечное множество частей, для которых площадь или объём уже известны. Этот метод был подхвачен и развит Архимедом, и использовался для расчёта площадей парабол и приближенного расчёта площади круга. Аналогичные методы были разработаны независимо в Китае в 3-м веке н. э. Лю Хуэйем, который использовал их для нахождения площади круга. Этот метод впоследствии использовали Цзу Чунчжи и Цзу Гэн для нахождения объёма шара.

Следующий крупный шаг в исчисление интегралов был сделан в Ираке, в XI веке, математиком Ибн ал-Хайсамом (известным как Alhazen в Европе), в своей работе «Об измерении параболического тела» он приходит к уравнению четвёртой степени. Решая эту проблему, он проводит вычисления, равносильные вычислению определённого интеграла, чтобы найти объём параболоида. Используя математическую индукцию, он смог обобщить свои результаты для интегралов от многочленов до четвёртой степени. Таким образом, он был близок к поиску общей формулы для интегралов от полиномов, но он не касается любых многочленов выше четвёртой степени.

Следующий значительный прогресс в исчислении интегралов появится лишь в XVI веке. В работах Кавальери с его методом неделимых, а также в работах Ферма, были заложены основы современного интегрального исчисления. Дальнейшие шаги были сделаны в начале XVII века Барроу и Торричелли, которые представили первые намеки на связь между интегрированием и дифференцированием.

Обозначение

Ньютон использовал (не везде) в качестве символа интегрирования значок квадрата (перед обозначением функции или вокруг него), но эти обозначения не получили широкого распространения. Современное обозначение неопределённого интеграла было введено Лейбницем в 1675 году. Он образовал интегральный символ \int из буквы ſ («длинная s») — сокращения слова лат. summa (тогда ſumma, сумма).[2] Современное обозначение определённого интеграла, с указанием пределов интегрирования, были впервые предложены Жаном Батистом Жозефом Фурье в 1819-20 годах.

См. также

Примечания

  1. Будылин А. М. Вариационное исчисление  (рус.). Электронная библиотека Попечительского совета механико-математического факультета Московского государственного университета. — Цифровое издание. Часть 3.3.1. Дифференцирование интеграла по параметру.. Архивировано из первоисточника 18 февраля 2012. Проверено 10 июля 2011.
  2. Florian Cajori A history of mathematical notations. — Courier Dover Publications, 1993. — P. 203. — 818 p. — (Dover books on mathematics). — ISBN 9780486677668

Литература

  • Никольский С. М. Глава 9. Определенный интеграл Римана // Курс математического анализа. — 1990. — Т. 1.
  • Ильин В. А., Позняк, Э. Г. Глава 6. Неопределенный интеграл // Основы математического анализа. — 1998. — Т. 1. — (Курс высшей математики и математической физики).
  • Ильин В. А., Позняк, Э. Г. Глава 10. Определенный интеграл // Основы математического анализа. — 1998. — Т. 1. — (Курс высшей математики и математической физики).
  • Демидович Б.П. Отдел 3. Неопределенный интеграл // Сборник задач и упражнений по математическому анализу. — 1990. — (Курс высшей математики и математической физики).
  • Демидович Б.П. Отдел 4. Определенный интеграл // Сборник задач и упражнений по математическому анализу. — 1990. — (Курс высшей математики и математической физики).

Ссылки


Wikimedia Foundation. 2010.

Синонимы:

Смотреть что такое "Интеграл" в других словарях:

  • ИНТЕГРАЛ — (обозначение т ). Математический символ, используемый в ИСЧИСЛЕНИИ, представляющий операцию суммирования. Интеграл функции f(x), записанный как т f(x)dx, может представлять площадь фигуры, ограниченной кривой y=f(x) и осью абсцисс. ИНТЕГРИРОВАНИЕ …   Научно-технический энциклопедический словарь

  • ИНТЕГРАЛ — (integral) Функция, первая производная (first derivative) которой равна другой функции. Если f(х) является первой производной от g(x), то, следовательно, g(x) является интегралом f(х) и, таким образом, h(x)=g(x)+k, где k – произвольно выбранная… …   Экономический словарь

  • интеграл — а, м. intégrale f. <лат. integer целый. Математическое понятие о целой величине как сумме своих бесконечно малых частей. Нахождение интеграла. БАС 1. Найти интеграл уравнения. 1766. Котельников Геодет 175. // Сл. 18. Алферинька недурно… …   Исторический словарь галлицизмов русского языка

  • ИНТЕГРАЛ — муж., мат., лат. конечная, измеримая величина, в отношении к бесконечно малой части ее, к дифференциалу. Интегральное вычисление, искусство отыскивать интеграл по дифференциалу. Интегрировать, вычислять, находить интеграл; интеграция жен.… …   Толковый словарь Даля

  • ИНТЕГРАЛ — (вово лат., от лат. integer ценный). В математике количество, дифференциал которого равен данной величине. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. интеграл (лат. integer целый) лет. 1) неопределенный и. от… …   Словарь иностранных слов русского языка

  • интеграл — первообразная, термин Словарь русских синонимов. интеграл сущ., кол во синонимов: 2 • первообразная (1) • …   Словарь синонимов

  • интеграл — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] интеграл Есть два различных понятия — неопределенный И. и определенный И. Говорят, что функция f(x) имеет …   Справочник технического переводчика

  • ИНТЕГРАЛ — (от латинского integer целый), одно из основных понятий интегрального исчисления …   Современная энциклопедия

  • ИНТЕГРАЛ — (от лат. integer целый) см. Интегральное исчисление …   Большой Энциклопедический словарь

  • ИНТЕГРАЛ — ИНТЕГРАЛ, интеграла, муж. (от лат. integer целый) (мат.). Конечная измеримая величина в отношении к бесконечно малой части ее к диференциалу. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • ИНТЕГРАЛ — [тэ ], а, муж. В математике: величина, получающаяся в результате действия, обратного дифференцированию. | прил. интегральный, ая, ое. Интегральное исчисление. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

Книги

  • Интеграл Стильтьеса., Гливенко В.И.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Эта книга предназначаетзя для аспирантов и студентов-математиков старших курсов. Но я стремился… Подробнее  Купить за 1950 руб
  • Интеграл Стильтьеса., Гливенко В.И.. Эта книга предназначаетзя для аспирантов и студентов-математиков старших курсов. Но я стремился сделать ее доступной и полезной также и научным работникам по механике и фязике. Математик… Подробнее  Купить за 1810 грн (только Украина)
  • Интеграл, Jesse Russell. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Внимание! Книга представляет собой набор материалов из Википедии и/или других online-источников.… Подробнее  Купить за 1254 руб
Другие книги по запросу «Интеграл» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»