Закон сохранения заряда

Закон сохранения заряда

Зако́н сохране́ния электри́ческого заря́да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

q_1+q_2+q_3+......+ q_n = const

Закон сохранения заряда выполняется абсолютно точно. На данный момент его происхождение объясняют следствием принципа калибровочной инвариантности[1][2]. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме равно потоку заряда через его границу. В изначальной формулировке был бы возможен следующий процесс: заряд исчезает в одной точке пространства и мгновенно возникает в другой. Однако такой процесс был бы релятивистски неинвариантен: из-за относительности одновременности в некоторых системах отсчёта заряд появился бы в новом месте до того, как исчез в предыдущем, а в некоторых — заряд появился бы в новом месте спустя некоторое время после исчезновения в предыдущем. То есть был бы отрезок времени, в течение которого заряд не сохраняется. Требование локальности позволяет записать закон сохранения заряда в дифференциальной и интегральной форме.

Содержание

Закон сохранения заряда и калибровочная инвариантность

Симметрия в физике
Преобразование Соответствующая
инвариантность
Соответствующий
закон
сохранения
Трансляции времени …энергии
C, P, CP и T-симметрии …чётности
Трансляции пространства Однородность
пространства
…импульса
Вращения пространства Изотропность
пространства
…момента
импульса
Группа Лоренца Относительность
Лоренц-инвариантность
…4-импульса
~ Калибровочное преобразование Калибровочная инвариантность …заряда

Физическая теория утверждает, что каждый закон сохранения основан на соответствующем фундаментальном принципе симметрии. Со свойствами симметрий пространства-времени связаны законы сохранения энергии, импульса и момента импульса. Законы сохранения электрического, барионного и лептонного зарядов связаны не со свойствами пространства-времени, а с симметрией физических законов относительно фазовых преобразований в абстрактном пространстве квантовомеханических операторов и векторов состояний. Заряженные поля в квантовой теории поля описываются комплексной волновой функцией\phi(x)=|\phi(x)|e^{i \psi (x)}, где x — пространственно-временная координата. Частицам с противоположными зарядами соответствуют функции поля, различающиеся знаком фазы \psi, которую можно считать угловой координатой в некотором фиктивном двумерном «зарядовом пространстве». Закон сохранения заряда является следствием инвариантности лагранжиана относительно глобального калибровочного преобразования типа \phi'=e^{i \alpha Q}\phi, где Q — заряд частицы, описываемой полем \phi, а \alpha — произвольное вещественное число, являющееся параметром и не зависящее от пространственно-временных координат частицы. Такие преобразования не меняют модуля функции, поэтому они называются унитарными U(1).[3][4]

Закон сохранения заряда в интегральной форме

Вспомним, что плотность потока электрического заряда есть просто плотность тока. Тот факт, что изменение заряда в объёме равно полному току через поверхность, можно записать в математической форме:

\frac{\partial}{\partial t}\int\limits_{\Omega}  \rho dV = - \oint\limits_{\partial \Omega} \vec{j}\cdot d\vec{S}.

Здесь \Omega — некоторая произвольная область в трёхмерном пространстве, \partial \Omega — граница этой области, \rho — плотность заряда, \vec{j} — плотность тока (плотность потока электрического заряда) через границу.

Закон сохранения заряда в дифференциальной форме

Переходя к бесконечно малому объёму и используя по мере необходимости теорему Стокса можно переписать закон сохранения заряда в локальной дифференциальной форме (уравнение непрерывности)

\frac{\partial \rho}{\partial t}+\mbox{div} \vec{j}=0.

Закон сохранения заряда в электронике

Правила Кирхгофа для токов напрямую следуют из закона сохранения заряда. Объединение проводников и радиоэлектронных компонентов представляется в виде незамкнутой системы. Суммарный приток зарядов в данную систему равен суммарному выходу зарядов из системы. В правилах Кирхгофа предполагается, что электронная система не может значительно изменять свой суммарный заряд.

Экспериментальная проверка

Наилучшей экспериментальной проверкой закона сохранения электрического заряда является поиск таких распадов элементарных частиц, которые были бы разрешены в случае нестрогого сохранения заряда. Такие распады никогда не наблюдались.[5] Лучшее экспериментальное ограничение на вероятность нарушения закона сохранения электрического заряда получено из поиска фотона с энергией mec2/2 ≈ 255 кэВ, возникающего в гипотетическом распаде электрона на нейтрино и фотон:

  e → νγ   время жизни больше 4,6·1026 лет (90 % CL),[6]

однако существуют теоретические аргументы в пользу того, что такой однофотонный распад не может происходить даже в случае, если заряд не сохраняется.[7] Другой необычный несохраняющий заряд процесс — спонтанное превращение электрона в позитрон[8] и исчезновение заряда (переход в дополнительные измерения, туннелирование с браны и т. п.). Наилучшие экспериментальные ограничения на исчезновение электрона вместе с электрическим зарядом и на бета-распад нейтрона без эмиссии электрона:

  e → любые частицы время жизни больше 6,4·1024 лет (68 % CL)[9]
n → pνν относительная вероятность несохраняющего заряд распада менее 8·10−27 (68 % CL) при бета-распаде нейтрона[10]


Примечания

  1. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-ое изд., М., ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Разд. VII «Основы ядерной физики и физики элементарных частиц», Гл. 4 «Элементарные частицы», п. 3 «Гравитация. Квантовая электродинамика.», с. 952;
  2. Ландау Л. Д., Лифшиц Е. М. «Теоретическая физика», учебн. пособ. для вузов, в 10 т. / т. 4, «Квантовая электродинамика», 4-е изд., исправл., М., «Физматлит», 2001, 720 с., тир. 2000 экз., ISBN 5-9221-0058-0 (т. 4), гл. 5 «Излучение», п. 43 «Оператор электромагнитного взаимодействия», с. 187—190.
  3. Окунь Л. Б. Лептоны и кварки, изд 3-е, стереотипное, М.: Едиториал УРСС, 2005, 352 с., ISBN 5-354-01084-5, гл. 19 Калибровочная инвариантность. Глобальная абелева симметрия U(1)., с. 179
  4. Яворский Б. М. Справочник по физике для инженеров и студентов вузов. / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-е изд. перераб. и испр., М., ООО «Издательство Оникс», ООО «Издательство Мир и Образование», 2006, 1056 стр., ил., ISBN 5-488-00330-4 (ООО «Издательсто Оникс»), ISBN 5-94666-260-0 (Издательство «Мир и Образование»), ISBN 985-13-5975-0 (ООО «Харвест»), Раздел VII. Основы ядерной физики и физики элементарных частиц. Глава 4. «Элементарные частицы» п. 1 «Принципы теории» cтр. 912—925.
  5. J. Beringer et al. (2012). «Tests of Conservation Laws». Phys. Rev. D 86: 010001.
  6. H.O. Back et al. (2002). «Search for electron decay mode e → γ + ν with prototype of Borexino detector». Physics Letters B 525 (1-2): 29–40. DOI:10.1016/S0370-2693(01)01440-X. Bibcode2002PhLB..525...29B.
  7. L.B. Okun (1989). «Comments on Testing Charge Conservation and Pauli Exclusion Principle». Comments on Nuclear and Particle Physics 19 (3): 99–116.
  8. R.N. Mohapatra (1987). «Possible Nonconservation of Electric Charge». Physical Review Letters 59 (14): 1510–1512. DOI:10.1103/PhysRevLett.59.1510. Bibcode1987PhRvL..59.1510M.
  9. DOI:10.1016/S0370-2693(99)01091-6. Bibcode1999PhLB..465..315B..
  10. Norman E.B., Bahcall J.N., Goldhaber M. (1996). «Improved limit on charge conservation derived from 71Ga solar neutrino experiments». Physical Review D53 (7): 4086–4088. DOI:10.1103/PhysRevD.53.4086. Bibcode1996PhRvD..53.4086N.

Wikimedia Foundation. 2010.

См. также в других словарях:

  • Закон сохранения заряда —  закон сохранения электрического заряда закон, согласно которому алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах. Электрический заряд любой частицы или системы частиц… …   Концепции современного естествознания. Словарь основных терминов

  • Закон сохранения электрического заряда — гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. Требование релятивистской инвариантности приводит к тому, что закон сохранения заряда имеет локальный характер: изменение заряда в любом наперёд заданном объёме… …   Википедия

  • Закон сохранения момента импульса — (закон сохранения углового момента)  один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на… …   Википедия

  • Закон сохранения — Законы сохранения фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Некоторые из законов… …   Википедия

  • Закон сохранения энергии — Закон сохранения энергии  фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и… …   Википедия

  • Закон сохранения импульса — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • Закон сохранения лептонного числа —   Аромат в физике элементарных частиц   Ароматы и квантовые числа: Лептонное число: L Барионное число: B Странность: S Очарование: C Прелесть: B Истинность: T Изоспин: I или Iz Слабый изоспин: Tz …   Википедия

  • Закон сохранения барионного заряда —   Аромат в физике элементарных частиц   Ароматы и квантовые числа: Лептонное число: L Барионное число: B Странность: S Очарование: C Прелесть: B Истинность: T Изоспин: I или Iz Слабый изоспин: Tz …   Википедия

  • СОХРАНЕНИЯ ПРИНЦИПЫ — утверждения, выражающие идею сохранения вещей, свойств или отношений природы и выступающие в качестве принципов науч. теорий. К числу С. п. относятся, напр. известные в физике законы сохранения – энергии, массы, импульса, момента импульса,… …   Философская энциклопедия

  • заряда сохранения закон — закон, согласно которому алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при всех происходящих в системе процессах. * * * ЗАРЯДА СОХРАНЕНИЯ ЗАКОН ЗАРЯДА СОХРАНЕНИЯ ЗАКОН, закон, согласно которому… …   Энциклопедический словарь

Книги

  • Теорема Нётер, Джесси Рассел. High Quality Content by WIKIPEDIA articles!Теоре?ма Эмми Нётер утверждает, что каждой непрерывной симметрии физической системы соответствует некоторый закон сохранения. Так, закон сохранения… Подробнее  Купить за 1125 руб
  • Закон сохранения заряда, Джесси Рассел. High Quality Content by WIKIPEDIA articles!Зако?н сохране?ния электри?ческого заря?да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. Внимание! На данный… Подробнее  Купить за 1125 руб
  • Закон сохранения заряда, . High Quality Content by WIKIPEDIA articles!Зако?н сохране?ния электри?ческого заря?да гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется. Данное издание… Подробнее  Купить за 1125 руб
Другие книги по запросу «Закон сохранения заряда» >>

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»