Элементарная алгебра

Элементарная алгебра

Элемента́рная а́лгебра — самый старый раздел алгебры, в котором изучаются алгебраические выражения и уравнения над вещественными и комплексными числами.

Содержание

Законы элементарной алгебры

Правила записи

  1. Если между символами переменных не указан знак операций, подразумевается умножение: ab = a \cdot b . То же верно для сочетания константы и переменной (например, 1,2x), а также выражений в скобках: \pi~(a^2~+~b^2) или (a-b)(a+b).
  2. Порядок выполнения операций указывается скобками. Если скобок нет, то приоритетность, в порядке убывания, следующая.
    1. Возведение в степень.
    2. Вычисление функции.
    3. Умножение и деление.
    4. Сложение и вычитание.

Примеры:

  • a^{b^{c}} = a^{(b^{c})}
  • \sin x^2 = \sin (x^2)
  • \sin a + b = (\sin a) + b

Свойства операций

a + b = b + a. \
  • Вычитание есть действие, обратное сложению.
  • Вычитание числа b равносильно сложению с числом, противоположным b:
 a - b = a + (-b). \
 a \times b = b \times a \
  • Деление есть действие, обратное умножению.
  • Деление на нуль невозможно.
  • Деление на число b равносильно умножению на число, обратное к b:
 {a \over b} = a \left( {1 \over b} \right).

Свойства равенства

Другие законы

  • Если a = b и c = d, то a + c = b + d.
  • Если a = b и c = d, то ac = bd.
  • Если значения двух символов совпадают, то вместо одного можно подставить другой (принцип подстановки).
  • Если a > b и b > c, то a > c (транзитивность порядка).
  • Если a > b, то a + c > b + c для любого c.
  • Если a > b и c > 0, то ac > bc.
  • Если a > b и c < 0, то ac < bc.

Исторический очерк

О происхождении названия науки см. Алгебра.

Идея записывать общие свойства чисел и вычислительные алгоритмы на особом символическом метаязыке появилась давно, однако первоначально буквенные символы в уравнениях обозначали только неизвестные, значения которых следует найти, а для прочих членов уравнения записывали конкретные числовые значения. Мысль о том, что известные величины (коэффициенты) тоже полезно для общности обозначать символами, пробивала себе путь медленно.

Впервые, насколько можно судить по дошедшим до нас древним сочинениям, развитая алгебраическая система появляется в «Арифметике» Диофанта (IV век). Вряд ли можно сомневаться, что у него были предшественники, как они имелись у Евклида, Архимеда и других, однако мы ничего не знаем ни о людях, ни о трудах, на которые мог опираться этот замечательный алгебраист. Да и последователей у него не было до XV века. Впрочем, в Европе с переводом «Арифметики» познакомились только в XVI веке, и методы Диофанта оказали огромное влияние на Виета и Ферма.

Основная проблематика «Арифметики» — нахождение рациональных решений неопределённых уравнений (многочленов произвольной степени) с рациональными коэффициентами. У Диофанта используется буквенная символика, правда, по-прежнему только для неизвестных. Во введении к «Арифметике» Диофант принимает следующие обозначения: неизвестную он называет «числом» и обозначает буквой ξ, квадрат неизвестной — символом \delta ^ \nu и т. д. Особые символы обозначали отрицательные степени, знак равенства и даже, похоже, отрицательные числа (есть даже правило знаков: минус на минус даёт плюс). Всё прочее выражается словесно. Сформулированы многие привычные нам правила алгебры: смена знака при переносе в другую часть уравнения, сокращение общих членов и др.

Индийские математики средневековья тоже далеко продвинулись в алгебре; их символика богаче, чем у Диофанта, хотя несколько громоздка (засорена словами).

В Европе, в книгах «Арифметика» и «О данных числах» Иордана Неморария (XIII век) усматриваются зачатки символической алгебры, до поры до времени не отделившейся от геометрии. У него, а также у Фибоначчи уже встречаются выражения вроде "a лошадей за f дней съедают e мер овса". Однако в общую концепцию изложения символизм у них ещё не включён.

Крупнейший алгебраист XV века Лука Пачоли вводит свой аналог алгебраической символики, ещё не слишком общий и не слишком удобный.

Концептуальную реформу и коренные улучшения алгебраического языка ввёл в конце XVI века Франсуа Виет, адвокат по профессии, математик по склонности души. Он чётко представлял себе конечную цель — разработку «нового исчисления», своего рода обобщённой арифметики. Виет обозначал буквами все коэффициенты (кстати, именно Виет придумал этот термин). Все задачи решаются в общем виде, и только потом приводится числовые примеры. Виет свободно применяет алгебраические преобразования, замену переменных и другие алгебраические приёмы.

Система Виета вызвала всеобщее восхищение. Она позволила описать законы арифметики и алгоритмы с немыслимыми ранее общностью и компактностью, облегчила и углубила исследование общих числовых законов. Однако символика Виета была непохожа на современную, местами громоздка, и учёные разных стран приступили к её совершенствованию.

Англичанин Томас Хэрриот в своём посмертно изданном (1631) труде уже очень близок к современной символике: он обозначает переменные строчными буквами, а не заглавными, как у Виета, использует знак равенства, а также придуманные им символы сравнения «>» и «<».

Практически современный вид алгебраической символике придал Рене Декарт (середина XVII века, трактат «Геометрия»). Итогом и завершением этого процесса стала «Универсальная арифметика» Ньютона. Некоторые оставшиеся тонкости уточнил Эйлер.

См. также

Литература


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Элементарная алгебра" в других словарях:

  • Алгебра (значения) — Алгебра  раздел математики либо математическая структура специального вида (см. Алгебраическая система) Как раздел математики Абстрактная алгебра Алгебра логики  раздел математической логики. Коммутативная алгебра Линейная алгебра… …   Википедия

  • Алгебра — вместе с арифметикой есть наука о числах и через посредство чисел о величинах вообще. Не занимаясь изучением свойств каких нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин как таковых, независимо от… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Алгебра — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра (от араб. الجبر‎‎, «аль джабр»  восполнение[1])  раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово… …   Википедия

  • Элементарная математика — Элементарная математика  несколько неопределённое понятие, охватывающее те разделы математики, которые изучаются в средней школе. Преподавание элементарной математики в России В России обучение математике начинается с 1 класса. В начальной… …   Википедия

  • Алгебра —          Общие сведения          Алгебра один из больших разделов математики (См. Математика), принадлежащий наряду с арифметикой (См. Арифметика) и геометрией (См. Геометрия) к числу старейших ветвей этой науки. Задачи, а также методы А.,… …   Большая советская энциклопедия

  • Линейная алгебра — Эта статья в данный момент активно редактируется участником Zanka. Пожалуйста, не вносите в неё никаких изменений до тех пор, пока не исчезнет это объявление. В противном случае могут возникнуть конфликты редактирования. Данное предупреждение… …   Википедия

  • Абстрактная алгебра — (также высшая алгебра или общая алгебра)  раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, частично упорядоченные множества, решётки, а также… …   Википедия

  • Дифференциальная алгебра — Дифференциальными кольцами, полями и алгебрами называются кольца, поля и алгебры, снабжённые дифференцированием  унарной операцией, удовлетворяющей правилу произведения. Естественный пример дифференциального поля  поле рациональных… …   Википедия

  • Общая алгебра — (также абстрактная алгебра, высшая алгебра)  раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, частично упорядоченные множества, решётки, а также… …   Википедия

  • Гомологическая алгебра — ветвь алгебры изучающая алгебраические объекты, заимствованные из алгебраической топологии. Первыми гомологические методы в алгебре, при изучении расширений групп, применили в 40 х годах XX века С. Эйленберг и С. Маклейн. Гомологическая алгебра… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»