Квантовый провод

Квантовый провод

В физике конденсированного состояния квантовый провод — это электропроводящий провод, в котором квантовые эффекты оказывают влияние на явления переноса. Из-за квантовых ограничений на электроны проводимости в поперечном направлении провода, их поперечная энергия квантуется на ряд дискретных значений: E_0 (энергия «основного состояния» с самым низким значением), E_1, ... (см. квантовый гармонический осциллятор). Одним из следствий этого квантования является то, что классическая формула для расчёта электрического сопротивления провода:

R=\rho{l \over A}

недействительна для квантового провода (где: \rho — удельное сопротивление, l — длина, A — площадь поперечного сечения провода).

Вместо этого для расчёта сопротивления провода должен быть проведён точный расчёт поперечной энергии электронов в ограниченном пространстве. Из-за дискретности значений энергии электронов, рассчитанное сопротивление также будет квантоваться.

Влияние квантовых эффектов и значимость квантования возрастает обратно пропорционально диаметру нанопровода для данного материала. Если сравнивать различные материалы, то значимость квантования зависит от его электронных свойств, в особенности от эффективной массы электронов. Проще говоря, это означает, что значимость будет зависеть от того, как электроны проводимости взаимодействуют с атомами внутри данного материала. На практике полупроводники начинают проявлять чёткое влияние квантования проводимости при достаточно больших поперечных размерах провода (100 нм), так как электронные уровни у них возрастают из-за пространственных ограничений уже при таких параметрах. В результате фермиевская длина волны электронов увеличивается, и возникает расщепление на энергетические уровни с достаточно низкой энергией. Это означает, что они могут возникнуть только при криогенных температурах (несколько градусов по Кельвину), когда тепловая энергия возбуждения ниже, чем энергия переходов между состояниями.

Углеродные нанотрубки в качестве квантовых проводов

Квантовые провода можно сделать из металлических углеродных нанотрубок, по крайней мере ограниченной длины. Преимущества проводов из углеродных нанотрубок состоят в их высокой электропроводности (в связи с высокой подвижностью электронов), лёгком весе, малом диаметре, низкой химической активности и высокой прочности на растяжение. Основным недостатком (по состоянию на 2005 г.) является их высокая стоимость.

Утверждается, что можно создать и макроскопические квантовые провода. В нитях из углеродных нанотрубок нет необходимости каждому отдельному волокну проходить по всей длине провода, поскольку квантовое туннелирование электронов создаст туннельные переходы от жилы к жиле. Это свойство делает квантовые провода весьма перспективными для коммерческого использования.

В апреле 2005 года NASA инвестировала $11 млн в течение четырех лет в университет Уильяма Райса на разработку квантового провода с проводимостью в 10 раз выше, чем у меди, а по весу в шесть раз легче. Эти свойства могут быть достигнуты с помощью углеродных нанотрубок. В случае появления таких материалов они позволят снизить вес следующего поколения Спейс шаттла. Они также найдут и другие применения.

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Квантовый провод" в других словарях:

  • Квантовая точка — У этого термина существуют и другие значения, см. Точка (значения). Квантовая точка  фрагмент проводника или полупроводника (например InGaAs, CdSe или GaInP/InP), носители заряда (электроны или дырки) которого ограничены в пространстве по… …   Википедия

  • Квантовая нанотехнология — Квантовая нанотехнология  область исследований нанотехнологий, основанных на квантовой теории. В квантовых нанотехнологиях основное внимание уделяется использованию квантовым феноменам в наноматериалах и наносистемах. При этом квантовая… …   Википедия

  • Квантовые точки — Квантовая точка фрагмент проводника или полупроводника, ограниченный по всем трём пространственным измерениям и содержащий электроны проводимости. Точка должна быть настолько малой, чтобы были существенны квантовые эффекты. Это достигается, если… …   Википедия

  • Квантовая яма — Квантовая яма  это потенциальная яма, которая ограничивает подвижность частиц с трех до двух измерений, тем самым заставляя их двигаться в плоском слое. Квантово размерные эффекты проявляют себя, когда длина ямы становится сравнима с длиной… …   Википедия

  • Пористый кремний — (por Si или ПК)  кремний, испещренный порами, то есть имеющий пористую структуру. Содержание 1 История 2 Классификация 3 Получение …   Википедия

  • Потенциальная яма — участок от X1 до X2 Потенциальная яма – область пространства, где присутствует локальный минимум потенциальной энергии …   Википедия

  • Флуоресценция — уранового стекла в ультрафиолетовом свете …   Википедия

  • Усилитель электрических колебаний —         устройство, предназначенное для усиления электрических (электромагнитных) колебаний в системах многоканальной связи, радиоприёмной, радиопередающей, измерительной и др. аппаратуре. Такое усиление представляет собой процесс управления… …   Большая советская энциклопедия

  • Биолюминесценция — обыкновенного светляка Биолюминесценция  способность живых организмов светиться, достигаемая самостоятельно или с помощью симб …   Википедия

  • Сент-Джерард, Майкл — Майкл Сент Джерард (англ. Michael St. Gerard, настоящее имя англ. Michael G. Kallassy; род. 22 января 1961(19610122), Нью Йорк)  американский актёр. Начал сниматься в кино в 1987 г. Известен, главным образом, исполнением… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»