Формула Остроградского

Формула Остроградского

Фо́рмула Острогра́дского — формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью:

\iiint\limits_T\mathrm{div}\,\mathbf{F}\,dV=\iint\limits_S\!\!\!\!\!\!\!\!\!\!\!\subset\!\supset\;\mathbf F\cdot\mathbf{n}\,dS,

то есть интеграл от дивергенции векторного поля \mathbf F, распространённый по некоторому объёму T, равен потоку вектора через поверхность S, ограничивающую данный объём.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.

В работе Остроградского формула записана в следующем виде:

\int\left(\frac{dp}{dx}+\frac{dq}{dy}+\frac{dr}{dz}\right)\omega=\int(P\cos\lambda+Q\cos\mu+R\cos\nu)s,

где ω и s — дифференциалы объёма и поверхности соответственно. В современной записи ω = dΩ — элемент объёма, s = dS — элемент поверхности. P=P(x,\;y,\;z),\;Q=Q(x,\;y,\;z),\;R=R(x,\;y,\;z) — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью.

Обобщением формулы Остроградского является формула Стокса для многообразий с краем.

Содержание

История

Общий метод преобразования тройного интеграла к поверхностному впервые показал Карл Фридрих Гаусс (1813, 1830 гг.) на примере задач электродинамики[1].

В 1826 году М. В. Остроградский вывел формулу в общем виде, представив её в виде теоремы (опубликовано в 1831 году). Многомерное обобщение формулы М. В. Остроградский опубликовал в 1834 году[1]. С помощью данной формулы Остроградский нашёл выражение производной по параметру от n-кратного интеграла с переменными пределами и получил формулу для вариации n-кратного интеграла.

За рубежом формула называется формулой Гаусса или «формулой (теоремой) Гаусса—Остроградского».

См. также

Литература

  • Остроградский М. В. Note sur les integrales definies. // Mem. 1’Acad. (VI), 1, стр. 117—122, 29/Х 1828 (1831).
  • Остроградский М. В. Memoire sur le calcul des variations des integrales multiples. // Mem. 1’Acad., 1, стр. 35—58, 24/1 1834 (1838).

Примечания

  1. 1 2 Александрова Н. В. Математические термины.(справочник). М.: Высшая школа, 1978, стр. 150-151.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "Формула Остроградского" в других словарях:

  • Остроградского формула — Теорема Остроградского  Гаусса  утверждение интегрального исчисления функций многих переменных, устанавливающее связь между n кратным интегралом по области и (n − 1) кратным интегралом по её границе. Пусть V = (v1,v2,...,vn) есть векторное поле… …   Википедия

  • Формула Гаусса-Остроградского — Теорема Остроградского  Гаусса  утверждение интегрального исчисления функций многих переменных, устанавливающее связь между n кратным интегралом по области и (n − 1) кратным интегралом по её границе. Пусть V = (v1,v2,...,vn) есть векторное поле… …   Википедия

  • Формула Стокса — Теорема Стокса одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Названа в честь Дж. Г. Стокса. Содержание 1 Общая формулировка 2… …   Википедия

  • Формула Грина — Теорема Грина устанавливает связь между криволинейным интегралом по замкнутому контуру C и двойным интегралом по области D, ограниченной этим контуром. Фактически, эта теорема является частным случаем более общей теоремы Стокса. Теорема названа в …   Википедия

  • Формула Лиувилля-Остроградского — Формула Лиувилля Остроградского  формула, связывающая определитель Вронского (вронскиан) для решений дифференциального уравнения и коэффициенты в этом уравнении. Пусть есть дифференциальное уравнение вида y(n) + P1(x)y(n − 1) + P2(x)y(n − 2) …   Википедия

  • Формула Лиувилля — Остроградского  формула, связывающая определитель Вронского (вронскиан) для решений дифференциального уравнения и коэффициенты в этом уравнении. Пусть есть дифференциальное уравнение вида тогда где   определитель Вронского Для линейной… …   Википедия

  • ОСТРОГРАДСКОГО ФОРМУЛА — формула интегрального исчисления функций многих переменных, устанавливающая связь между n кратным интегралом по области и ( п 1) кратным интегралом но ее границе. Пусть функции Xi=Xi(x1,x2,..., х п).вместе со своими частными производными , i=1, 2 …   Математическая энциклопедия

  • ОСТРОГРАДСКОГО ФОРМУЛА — связывает тройной интеграл (см. Кратный интеграл) по некоторому объему с поверхностным интегралом по поверхности, ограничивающей этот объем. Предложена М. В. Остроградским (1828 31) …   Большой Энциклопедический словарь

  • Остроградского формула —         формула, дающая преобразование интеграла, взятого по объёму Q, ограниченному поверхностью S, в интеграл, взятый по этой поверхности:                  здесь X, Y, Z функции точки (х, у, z), принадлежащей трёхмерной области Ω. О. ф. найдена …   Большая советская энциклопедия

  • Формула Гаусса—Остроградского — Формула Остроградского  математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью: то есть интеграл от дивергенции векторного… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»