ЭПР парадокс

ЭПР парадокс

Парадокс Эйнште́йна — Подо́льского — Ро́зена (ЭПР-парадокс) — попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект непосредственного воздействия.

В 1927 году на Пятом Сольвеевском конгрессе Эйнштейн решительно выступил против «копенгагенской интерпретации» Макса Борна и Нильса Бора, трактующей математическую модель квантовой механики как существенно вероятностную. Эйнштейн заявил, что сторонники этой интерпретации «из нужды делают добродетель», а вероятностный характер свидетельствует лишь о том, что наше знание физической сущности микропроцессов неполно.[1] И в 1935 году вместе с соавторами написал статью, в которой и описал ЭПР-парадокс.

Содержание

Суть парадокса

Согласно соотношению неопределённостей Гейзенберга, мы не можем измерить одновременно координату частицы и её импульс. Предполагая, что причиной неопределённости является то, что производя измерение одной величины, мы вносим принципиально неустранимые возмущения в её движение и искажаем значение другой величины, можно было бы предложить гипотетический способ, которым соотношение неопределённостей можно обойти.

Допустим, две одинаковые частицы A и B образовались в результате распада третьей частицы C. В этом случае, по закону сохранения импульса, их суммарный импульс \mathbf p_A + \mathbf p_B должен быть равен исходному импульсу третьей частицы \mathbf p_C, то есть, импульсы двух частиц должны быть связаны. Это даёт нам возможность измерить импульс одной частицы и по закону сохранения импульса \mathbf p_A = \mathbf p_C - \mathbf p_B рассчитать импульс второй, не внося в её движение никаких возмущений. Поэтому, измерив координату второй частицы, мы сумеем получить для этой частицы значения двух неизмеримых одновременно величин, что по законам квантовой механики невозможно. Таким образом получается, что соотношение неопределённостей не является абсолютным, а законы квантовой механики являются неполными и должны быть в будущем уточнены.

История вопроса

Впервые ЭПР-парадокс был сформулирован Альбертом Эйнштейном в 1927 году на 5-ом Сольвеевском конгрессе, в дискуссии с Нильсом Бором. Эйнштейн не признавал вероятностного характера квантовой механики и считал вероятностное описание микромира неполным. Название «Парадокс Эйнштейна — Подольского — Розена» парадокс получил после выхода совместной статьи Альберта Эйнштейна, Бориса Подольского и Натана Розена (1935) «Можно ли считать квантово-механическое описание физической реальности полным?».[2]

После публикации этой статьи Нильс Бор опубликовал статью с тем же названием,[3] в которой он высказал несколько тезисов за вероятностное описание квантовой механики, и даже ее связь с Эйнштейновской Общей теорией относительности. Так зародился спор Бора — Эйнштейна о физическом смысле волновой функции.

Бом в 1951 году предлагает оптический вариант ЭПР-опыта, а Белл выводит критерий, по которому можно определить какой из теорий отдать предпочтение.

Результаты экспериментов, проведённых в 1972 году Стюартом Дж. Фридманом и Джоном Ф. Клаузером[4] в Калифорнийском университете в Беркли согласовывались с квантовой механикой, и было зафиксировано нарушение неравенств Белла.

Затем в Гарвардском университете Р.А. Хольт и Ф.М. Пипкин [5] получили результат, расходящийся с квантовой механикой, но удовлетворяющий неравенствам Белла.

В 1976 году в Хюстоне Эдвард С. Фрай и Рэднделл. С. Томпсон [6] изготовили гораздо более совершенный источник коррелированных фотонов и их результат совпал с предсказаниями квантовой механики, и они установили отклонение от неравенств Белла.

Далее в период 1982—1985 г. Алан Аспект делает серию более сложных экспериментов, которые также совпадают с предсказаниями квантовой механики, и отмечают отклонение от неравенств Белла.

Критерий физической реальности и понятие полноты физической теории

Эйнштейн, Подольский, Розен в своей статье формулируют критерий физической реальности:

Если мы можем, при отсутствии возмущения системы, предсказать с достоверностью (то есть вероятностью, равной единице) значение некоторой физической величины, то существует элемент физической реальности, соответствующий этой физической величине.

А также указывают, что они понимают под полнотой физической теории:

Для суждения об успехе физической теории мы можем задать себе два вопроса: 1) Правильна ли теория? и 2) Является ли даваемое теорией описание полным? Только в том случае, если на оба эти вопроса можно дать положительные ответы, концепции теории могут быть признаны удовлетворительными. Первый вопрос — о правильности теории — решается в зависимости от степени согласия между выводами теории и человеческим опытом. Этот опыт, который только и позволяет нам делать заключения о действительности, в физике принимает форму эксперимента и измерения. Мы хотим рассмотреть здесь, имея в виду квантовую механику, второй вопрос … от всякой полной теории нужно, как нам кажется, требовать следующее: каждый элемент физической реальности должен иметь отражение в физической теории. Мы будем называть это условием полноты.

После чего авторы отмечают известный факт из квантовой механики:

… для частицы в состоянии ψ определенного значения координаты предсказать нельзя, а его можно получить только путем непосредственного измерения. Такое измерение вызовет возмущение частицы и, таким образом, изменит ее состояние. После того как координата будет определена, частица уже не будет больше находиться в прежнем состоянии. Обычно в квантовой механике из этого делается следующий вывод: если количество движения частицы известно, то ее координата не имеет физической реальности.

И отсюда делается закономерный вывод: «квантовомеханическое описание реальности посредством волновой функции не полно». Затем рассматривается случай зацепленных состояний и приходят к выводу, что «две физические величины с коммутирующими операторами могут быть реальными одновременно». А это означает, что их можно было бы измерить одновременно, что противоречит неопределенности Гейзенберга. Поэтому и в этом более сложном случае приходим к выводу, что и квантовомеханическое описание реальности посредством матрицы плотности не полно.

Критика парадокса

Ответ Бора

Ответ Бора начинается с заявления:

Квантовая механика в пределах своей области применимости представляется вполне рациональным описанием тех физических явлений с которыми мы встречаемся при изучении атомных процессов … аргументация в парадоксе ЭПР едва ли годится для того чтобы подорвать надежность квантово-механического описания основанного на стройной математической теории, которая охватывает все случаи измерения.

и далее Бор достаточно подробно рассматривает ряд измерений в экспериментах. Он отрицает, что можно говорить о какой-либо неполноте квантово — механического описания. А вероятностные измерения связанны с невозможностью контролировать обратное действие объекта на измерительный прибор (то есть учет переноса количества движения в случае измерения положения и учет смещения в случае измерения количества движения). После чего рассматривает различные способы устранения такого влияния, и приходит к выводу:

Невозможность более подробного анализа взаимодействий, происходящих между частицей и измерительным прибором … представляет существенное свойство всякой постановки эксперимента, пригодной для изучения явлений рассматриваемого типа, в которых мы сталкиваемся с своеобразной чертой индивидуальности, совершенно чуждой классической физике.

Здесь мы можем заметить, что Бор по сути возражает как бы на вопрос «Правильна ли теория?». Да, она правильна и результаты опыта это подтверждают. Эйнштейн и соавторы же делают акцент на вопросе «Является ли даваемое теорией описание полным?», то есть может ли быть найдено более удовлетворительное математическое описание, которое соответствовало бы физической реальности, а не проводимым нами измерениями. Бор же стоит на позиции, что физическая реальность есть то, что дает физическое измерение в эксперименте. Эйнштейн же, по видимому, допускает, что физическая реальность может отличаться от того, что нам дано в опыте, лишь бы математическое описание позволяло бы сделать прогноз с достоверностью (то есть вероятностью, равной единице) значения некоторой физической величины.

Поэтому Фок совершенно верно замечает, что Эйнштейн и Бор просто вкладывают разный смысл в некоторые термины и спор по сути идет о философском понимании физической реальности, и вся аргументация с той и другой стороны подчинена изначальной позиции, которую выбрал для себя оппонент:

Эйнштейн понимает слово «состояние» в том смысле, какой ему обычно приписывается в классической физике, то есть в смысле чего-то вполне объективного и совершенно независящего от каких бы то ни было сведений о нем. Отсюда и проистекают все парадоксы. Квантовая механика действительно занимается изучением объективных свойств природы в том смысле, что ее законы продиктованы самой природой, а не человеческой фантазией. Но к числу объективных понятий не принадлежит понятие о состоянии в квантовом смысле. В квантовой механике понятие о состоянии сливается с понятием «сведения о состоянии, получаемые в результате определенного максимально-точного опыта». В ней волновая функция описывает не состояние в обыкновенном смысле, а скорее эти «сведения о состоянии».

Оптический вариант мысленного ЭПР-опыта, предложенный Бомом

Бом в 1951 году в последней главе своей книги [7] отмечает, что в критерии физической реальности, данном в ЭПР-парадоксе неявно присутствуют два предположения:

  1. Вселенная может быть правильно разложена на различные и отдельно существующие «элементы реальности»;
  2. каждый из этих элементов может быть представлен точно определенной математической величиной.

Дальше Бом отмечает, что если искать доказательства концепции изложенной в ЭПР-парадоксе, то это должно привести к поискам более полной теории, выраженной, например, в виде теории скрытых параметров.

Важным вкладом Бома в решение этого парадокса считают, то что он используя два фильтра Штерна-Герлаха (оптическим аналогом является поляризатор, который использовался в реальных опытах), который был использован в опыте Штерна — Герлаха, предложил реальный физический эксперимент, который позволил бы в частном виде реализовать мысленный ЭПР-эксперимент. Но в то время это было невозможно технически, хотя позже такие эксперименты были сделаны многократно (наиболее известны эксперименты Аллана Аспекта). Таким образом, стала возможной некоторая постановка опыта, для проверки философских позиций Эйнштейн versus Бор.

Мысленный эксперимент Эйнштейна-Подольского-Розена-Бома с фотонами. Два фотона v1 и v2, испущенные в зацепленном состоянии, анализируются линейными поляризаторами с ориентациями a и b. Можно измерять вероятности одиночной или совместной регистрации на выходе каналов поляризаторов
Фильтр Штерна — Герлаха (поляризатор)


Суть опыта состоит в следующем: источник S испускает два фотона в зацепленных состояниях, которые можно описать уравнением |\psi (\nu_1, \nu_2) \mathcal {i} = \frac {1} {\sqrt {2}} (| x, x \mathcal {i} + | y, y \mathcal {i}) . Эти фотоны распространяются в противоположных направлениях вдоль оси Oz, а зацеплены по осям Ox и Oy. Исследователь может измерить одну из компонент (x, y или z) спина первого фотона, но не больше чем одну за опыт. Например, для частицы 1 сделаем измерение по оси Ox и получим таким образом компоненту x.

Но мы можем использовать тот факт, что зацепленное состояние не может быть преобразовано в произведение двух состояний, ассоциированных с состоянием каждого из фотонов. Например, в этом эксперименте мы не можем приписать каждому из них определенную поляризацию. Такое состояние описывает систему объектов целиком.

И тогда, благодаря зацепленности, при измерении спина (момента вращения) второго фотона должно получаться противоположное значение для компоненты y. То есть мы получаем косвенное измерение второй частицы, как это и было описано в мысленном ЭПР — эксперименте. И если бы это было справедливо для всех измерений (при различных процессах, и при произвольных углах ориентации поляризаторов), то это противоречило бы утверждению неопределенности Гейзенберга, что нельзя измерить достоверно две величины одной частицы.

Еще одним важным предложением Бома стало то, что исследователь может переориентировать аппаратуру в произвольном направлении пока частицы еще разлетаются и таким образом получить определенное значение спина в любом выбранном им направлении. Поскольку эта переориентация выполняется без возмущения второй частицы, то, приняв критерий физической реальности Эйнштейна, мы можем определить, получается ли результат измерения лишь в момент самого измерения (что соответствует положению квантовой механики) или же он уже предопределен до измерения, и, если бы мы знали скрытый параметр, то смогли бы это определить достоверно, с вероятностью 1.

Объясняя же возможные последствия подтверждения квантового описания в таком эксперименте Бом пишет:

… математическое описание, даваемое волновой функцией, не находится в однозначном соответствии с действительным поведением материи … квантовая теория не предполагает, что Вселенная построена по определенному математическому плану … Наоборот, мы должны прийти к точке зрения, что волновая функция — это абстракция, дающая математическое отражение определенных сторон реальности, но не однозначная карта ее. Кроме того, современная форма квантовой теории указывает на то, что вселенную нельзя привести в однозначное соответствие ни с каким мыслимым видом точно определенных математических величин и что полная теория всегда потребует понятий более общих, чем понятие разложения на точно определенные элементы.

Таким образом, Бом явным образом указывает, что квантовая механика является неполной теорией в том смысле, что не может сопоставить каждому элементу реальности определенную математическую величину. В то время как Вселенная по его мнению, может быть разложена на различные и отдельно существующие «элементы реальности».

Предсказания квантовой механики для ЭПРБ — опыта

Для одиночных отклонений фотонов в ту или другую сторону квантовая механика предсказывает вероятности Р±(а) (для фотона v1) и вероятности Р±(b) (для фотона v2):

P + (a) = P (a) = 1 / 2

P + (b) = P (b) = 1 / 2

Именно этот результат позволяет говорить, что мы не можем сопоставить определенную поляризацию каждому из фотонов, так как каждое отдельное измерение поляризации дает случайный результат (с вероятностью 1/2).

Для совместного обнаружения v1 и v2 в каналах + или — поляризаторов I или II с направлениями a и b квантовая механика предсказывает вероятности Р±± (а, b):

P_{++} (a, b) = P_{--} (a, b) = \frac {1} {2} cos^2 (a, b)

P_{+-} (a, b) = P_{-+} (a, b) = \frac {1} {2} sin^2 (a, b),

где (a, b) — угол между поляризаторами I и II.

Рассмотрим теперь частный случай когда (a, b) = 0, то есть, когда поляризаторы параллельны. Подставив это значение в уравнения получим:

P_{++} (a, b) = P_{--} (a, b) = \frac {1} {2}

P + − (a,b) = P − + (a,b) = 0

Что означает, что если фотон v1 обнаружен в канале + поляризатора I, то фотон v2 наверняка будет обнаружен в канале + поляризатора II (и аналогично для каналов -). Таким образом, для параллельных каналов имеется полная корреляция между индивидуальными случайными результатами измерения поляризации двух фотонов v1 и v2.

Удобной мерой корреляции между случайными числами является коэффициент корреляции:

E(a,b) = P + + (a,b) − P + − (a,b) − P − + (a,b) + P − − (a,b).

Таким образом, квантово-механические расчеты исходят из предположения, что хотя каждое отдельное измерение дает случайные результаты, но эти случайные результаты коррелированы и в частном случае (для параллельных и перпендикулярных ориентаций поляризаторов) корреляция является полной (|E(a, b)| = 1).

Этот же факт дает основания для построения более полной теории со скрытыми параметрами, но нужно учитывать, что простые ее виды уже проверены в ряде экспериментов, и их результаты указывают на то, что такие определенные виды таких теорий построить невозможно.

Теорема Белла и ее экспериментальные проверки

Основная статья: Теорема Белла
S(a, a',b, b'), предсказываемая квантовой механикой для зацепленных пар фотонов. Конфликт с неравенствами Белла возникает при | S | > 2

Оптический вариант мысленного ЭПР-опыта, предложенного Бомом и теорема Белла решающим образом повлияли на дискуссии о возможности полноты квантовой механики. Речь больше не шла о философской позиции, а стало возможным разрешение вопроса с помощью эксперимента.

Если можно приготовить пары фотонов (или частиц со спином 1/2) в зацепленном состоянии и измерить четыре числа совпадений N±± (a, b) для детекторов на выходе измерительных каналов поляризаторов (или фильтров Штерна-Герлаха), то можно получить и поляризационный коэффициент корреляции для поляризаторов с ориентациями a и b:

E(a,b) = \frac {N_{++}(a, b) - N_{+-}(a, b) - N_{-+}(a, b) + N_{--}(a, b)} {N_{++}(a, b) + N_{+-}(a, b) + N_{-+}(a, b) + N_{--}(a, b)}

Выполнив четыре измерения этого типа с ориентациями (a, b), (a, b'), (a',b) и (a',b'), мы получим измеренное значение S(a,a',b,b') = E(a,b) − E(a,b') + E(a',b) + E(a',b') необходимое для подстановки в неравенство Белла, которое имеет вид  -2 \le S(a,a',b,b') \le 2 .

Выбрав ситуацию, при которой квантовая механика предсказывает, что эта величина не удовлетворяет неравенствам Белла (например, это максимально проявляется при углах (a, b) = \pm \frac {\pi} {8} = 22,5° и (a, b) = \pm \frac {3\pi} {8} = 67,5°, значение S(a,a',b,b') = |2 \sqrt {2}| \approx \pm 2,8284 ), мы получаем экспериментальный критерий, позволяющий выбрать между квантовой механикой и некоторой локальной теорией со скрытыми параметрами.

Так, например, в наилучшем по качеству (с двухканальными поляризаторами) эксперименту А. Аспекта [8] для максимально конфликтного предсказания было полученно значение S(a,a',b,b') = 2,70 \pm 0,05, что хорошо согласуется с предсказаниями квантовой механики, но нарушает неравенства Белла.

Возможность теорий скрытых параметров

Как указано выше, Бом не анализирует другой возможный вариант, что Вселенная не может быть разложена на отдельно существующие «элементы реальности», что вполне согласуется с современными представлениями о структуре физического вакуума. И именно с этих позиций остается возможным построение теории скрытых параметров, которая будет полной в том смысле, что сможет сопоставить каждому элементу реальности определенную математическую величину, но эта величина будет связью между элементами, а не самим элементом.

Кроме того, тут важно понять связь между какими элементами имеется в виду. В связи с квантовой телепортацией активно проверяется мысль, что это связь между двумя фотонами, которые разнесены в пространстве-времени. Но такая связь, если бы она была, нарушала бы ОТО, в которой утверждается, что взаимодействие не может осуществляться быстрее скорости света. Несмотря на то, что был поставлен целый ряд экспериментов, обнаружить такое взаимодействие, распространяющееся быстрее скорости света, так и не удалось.

Но существует другой вариант. Если принять, что фотон — это не бесструктурная частица, а совокупность, например, двух микрочастиц, которые, так же как и кварки, нельзя получить в свободном состоянии, то становится возможным построить теорию скрытых параметров, которая не учтена в формализме теоремы Белла. Тогда именно эту связь двух микрочастиц мы будем называть фотоном, а описываться она будет не одним независимым скрытым параметром (как это учтено в формализме теоремы Белла), а парой взаимосвязанных скрытых параметров, например находящихся в противофазе. Тогда становится возможным добиться совпадения результатов с описанием квантовой механики, но такое описание будет уже полным, так как явно показывает какие параметры от нас скрыты и не учитываются в квантовой механике.

Примечания

  1. Кузнецов Б. Г. Эйнштейн. Жизнь. Смерть. Бессмертие. — 5-е изд., перераб. и доп.. — М.: Наука, 1980. — С. 535-537.
  2. Einstein A, Podolsky B, Rosen N (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Phys. Rev. 47 (10): 777–780. DOI:10.1103/PhysRev.47.777. (на англ.)
  3. Bohr N. (1935). "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?". Phys. Rev. 48 (8): 696-702. DOI:10.1103/PhysRev.48.696. (на англ.)
  4. S.J. Freedman and J.F. Clauser, Experimental test of local hidden-varible theories, Phys. Rev. Lett. 28, 938 (1972)
  5. F.M. Pipkin, Atomic Physic Tests of the Basics Concepts in Quantum Mechanics (1978)
  6. E.S. Fry, R.C. Thompson, Experimental test of local hidden-varible theories, Phys. Rev. Lett. 37, 465 (1976)
  7. Бом Д. Квантовая теория, гл. 22, п.15
  8. A.Aspect, P.Grangier, About Resonant Scattering and Other Hypothetical Effects in the Orsay Atomic-Cascade Experiment Tests of Bell Inequalities, Lett. Nuovo Cimento 43, 345 (1985)

См. также

Литература

  • Бом Д. Квантовая теория = Quantum Theory // New York: Prentice Hall. 1989 reprint, New York: Dover, ISBN 0-486-65969-0. — 1951., стр. 700, гл. 12, п. 15

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "ЭПР парадокс" в других словарях:

  • ЭПР-парадокс — Парадокс Эйнштейна  Подольского  Розена (ЭПР парадокс)  попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… …   Википедия

  • Парадокс Эйнштейна — Парадокс Эйнштейна  Подольского  Розена (ЭПР парадокс)  попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот… …   Википедия

  • Парадокс Эйнштейна-Подольского-Розена — Парадокс Эйнштейна  Подольского  Розена (ЭПР парадокс)  попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… …   Википедия

  • Парадокс Эйнштейна—Подольского—Розена — Парадокс Эйнштейна  Подольского  Розена (ЭПР парадокс)  попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… …   Википедия

  • Парадокс Эйнштейна — Подольского — Розена — Парадокс Эйнштейна  Подольского  Розена (ЭПР парадокс)  попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот… …   Википедия

  • ЭПР — эндоплазматический ретикулюм биол. Источник: Грин, Стаут, Тейлор. Общая биология ЭПР Эйнштейн Подольский Розен ЭПР парадокс квантовая механика физ. ЭПР электропарамагнитный резонанс электронный парамагнитный резонанс …   Словарь сокращений и аббревиатур

  • Парадокс — У этого термина существуют и другие значения, см. Парадокс (значения). Роберт Бойль. Схема доказательства того, что вечного двигателя не существует Парадокс …   Википедия

  • Эйнштейна-Подольского-Розена парадокс — Парадокс Эйнштейна  Подольского  Розена (ЭПР парадокс)  попытка указания на неполноту квантовой механики с помощью мысленного эксперимента, заключающегося в измерении параметров микрообъекта косвенным образом, не оказывая на этот объект… …   Википедия

  • ЭПР — Аббревиатура ЭПР может означать следующее: Электронный парамагнитный резонанс физическое явление и раздел спектроскопии Эффективная площадь рассеяния характеристика целей в радиолокации ЭПр  серия электропоездов Экологическая партия… …   Википедия

  • ЭЙНШТЕЙНА - ПОДОЛЬСКОГО - РОЗЕНА ПАРАДОКС — (парадокс ЭПР) логич. ситуация, возникшая при анализе мысленного эксперимента, предложенного в 1935 А. Эйнштейном, Б. Подольским (В. Podolsky) и H. Розеном (N. Rosen) с целью разграничения двух возможных интерпретаций волновой функции в квантовой …   Физическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»