Распределение Гаусса

Распределение Гаусса
Нормальное распределение
Плотность вероятности
Плотность нормального распределения
Красная линия соответствует стандартному нормальному распределению
Функция распределения
Функция распределения нормального распределения
Цвета на этом графике соответствуют графику наверху
Параметры μ - коэффициент сдвига (вещественное число)
σ > 0 - коэффициент масштаба (вещественный, строго положительный)
Носитель x \in (-\infty;+\infty)\!
Плотность вероятности \frac1{\sigma\sqrt{2\pi}}\; \exp\left(-\frac{\left(x-\mu\right)^2}{2\sigma^2} \right) \!
Функция распределения \frac1{\sigma\sqrt{2\pi}}\;\int\limits_{-\infin}^{x} \exp\left(-\frac{\left(t-\mu\right)^2}{2\sigma^2} \right) dt\!
Математическое ожидание \mu\,
Медиана \mu\,
Мода \mu\,
Дисперсия \sigma^2\,
Коэффициент асимметрии 0\,
Коэффициент эксцесса 0\,
Информационная энтропия \ln\left(\sigma\sqrt{2\,\pi\,e}\right)\!
Производящая функция моментов M_X(t)= \exp\left(\mu\,t+\frac{\sigma^2 t^2}{2}\right)
Характеристическая функция \phi_X(t)=\exp\left(\mu\,i\,t-\frac{\sigma^2 t^2}{2}\right)


Нормальное распределение, также называемое распределением Гаусса, — распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.

Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).

Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.

Содержание

Моделирование нормальных случайных величин

Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.

Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.

Статистическая проверка принадлежности нормальному распределению

Поскольку нормальное распределение часто встречается на практике, то для него разработаны специальные статистические критерии проверки на «нормальность»:

  • Критерий Пирсона
  • Критерий Колмогорова-Смирнова
  • Критерий Андерсона-Дарлинга(англ.)
  • Критерий Жака-Бера(англ.)
  • Критерий Шапиро-Вилка(англ.)
  • «График нормальности»(англ.) — не столько критерий, сколько графическая иллюстрация: точки специально построенного графика должны лежать почти на одной прямой.

Заключение

Нормальное распределение наиболее часто встречается в природе, нормально распределёнными являются следующие случайные величины:

  • отклонение при стрельбе
  • ошибки при измерениях
  • рост человека

Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный). Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием предельной теоремы Ляпунова.

См. также

Image:Bvn-small.png Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | Лапласа | логнормальное | Лоренца | нормальное (Гаусса) | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
править




Wikimedia Foundation. 2010.

См. также в других словарях:

  • РАСПРЕДЕЛЕНИЕ ГАУССА — син. термина распределение нормальное. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 …   Геологическая энциклопедия

  • РАСПРЕДЕЛЕНИЕ ГАУССА — (Gaussian distribution) см. Частота распределения, значимость …   Толковый словарь по медицине

  • Распределение Гаусса (Gaussian Distribution) — см. Частота распределения, значимость. Источник: Медицинский словарь …   Медицинские термины

  • Континуальное распределение Гаусса — было введено в квантовой теории поля как расширение понятия распределения Гаусса для конечномерных векторов на континуальные пространства скалярных и векторных полей. Континуальное распределение активно используется в аппарате функциональных… …   Википедия

  • ГАУССА РАСПРЕДЕЛЕНИЕ — (Гаусса закон распределения вероятностей) то же, что нормальное распределение …   Большой Энциклопедический словарь

  • РАСПРЕДЕЛЕНИЕ НОРМАЛЬНОЕ — наиболее важный тип распределения случайной величины. Функция Р. н. имеет вид: , где а математическое ожидание; σ2 дисперсия случайной величины; а, σ параметры Р. н. Характеристическая функция Р. н. . На практике многие случайные… …   Геологическая энциклопедия

  • Гаусса распределение — (Гаусса закон распределения вероятностей), то же, что нормальное распределение. * * * ГАУССА РАСПРЕДЕЛЕНИЕ ГАУССА РАСПРЕДЕЛЕНИЕ (Гаусса закон распределения вероятностей), то же, что нормальное распределение (см. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ) …   Энциклопедический словарь

  • ГАУССА РАСПРЕДЕЛЕНИЕ — (нормальное распределение) плотность распределения вероятностей случайного параметра , , равная где ср. значение, а дисперсия …   Физическая энциклопедия

  • Гаусса распределение — [Gaussian distribution]   см. Нормальное распределение …   Экономико-математический словарь

  • РАСПРЕДЕЛЕНИЕ — осн. понятие вероятностей теории и матем. статистики. Р. полностью характеризует случайную величину. Пусть x дискретная случайная величина, принимающая (конечное или бесконечное) счётное множество значений {xn}. Если вероятность реализации… …   Физическая энциклопедия

Книги