периодическая функция это:

периодическая функция
периоди́ческая фу́нкция
функция, значения которой не изменяются при прибавлении к аргументу некоторого (отличного от нуля) числа, так называемого периода функции. Например, sin— периодическая функция с периодом 2π, ибо sin(x + 2π) = sinx при любых x. Широко применяются в математике, физике и технике, особенно в изучении различных колебательных процессов.
* * *
ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ
ПЕРИОДИ́ЧЕСКАЯ ФУ́НКЦИЯ, функция, значения которой не изменяются при прибавлении к аргументу некоторого (отличного от нуля) числа, т. н. периода функции. Напр., sin х — периодическая функция с периодом 2p, ибо sin (х + 2p) = sin x при любых х. Широко применяются в математике, физике и технике, особенно в изучении различных колебательных процессов.

Энциклопедический словарь. 2009.

Смотреть что такое "периодическая функция" в других словарях:

  • ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ — функция, значения которой не изменяются при прибавлении к аргументу некоторого (отличного от нуля) числа, т. н. периода функции. Напр., sin х периодическая функция с периодом 2?, ибо sin (х + 2?) = sin x при любых х. Широко применяются в… …   Большой Энциклопедический словарь

  • Периодическая функция —         функция, значение которой не изменяется при добавлении к аргументу определённого, неравного нулю числа, называемого периодом функции. Например, sin х и cos x: являются П. ф. с периодом 2π; {x} дробная часть числа х П. ф. с периодом 1;… …   Большая советская энциклопедия

  • Периодическая функция —  [periodic function]  функция y=f(x), значение которой не меняется в случае, если к аргументу прибавить некоторое фиксированное ненулевое число Т (называемое периодом этой функции) , то еcть существует равенство: f(x) = f(x+T). Пример П.ф.:… …   Экономико-математический словарь

  • периодическая функция — Функция y=f(x), значение которой не меняется в случае, если к аргументу прибавить некоторое фиксированное ненулевое число Т (называемое периодом этой функции) , то еcть существует равенство: f(x) = f(x+T). Пример П.ф.: синусоида. П.ф. широко… …   Справочник технического переводчика

  • Периодическая функция — Графики синуса и косинуса  периодических функций с периодом . Периодическая функция ― функция, по …   Википедия

  • периодическая функция — periodinė funkcija statusas T sritis fizika atitikmenys: angl. periodic function vok. periodische Funktion, f rus. периодическая функция, f pranc. fonction périodique, f …   Fizikos terminų žodynas

  • ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ — функция, имеющая период. 1) Пусть функция f(x).определена на и имеет период Т. Для получения графика f(x) достаточно график функции f(x).на , где а нек рое число, переместить вдоль R на + Т, +2Т, ... . Если П. ф. f(x).с периодом Тимеет конечную… …   Математическая энциклопедия

  • ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ — функция, значения к рой не изменяются при прибавлении к аргументу нек рого (отличного от нуля) числа, т. н. периода функции. Напр., sin х П. ф. с периодом 2ПИ, ибо sin (х + 2ПИ) = sin x при любых х. Широко применяются в математике, физике и… …   Естествознание. Энциклопедический словарь

  • ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ — ф ция, значения к рой не изменяются при прибавлении к аргументу нек рого (отличного от нуля) числа, т. н. периода ф ции. Напр., sinx П. ф. с периодом 2я, ибо sin (х + 2ПИ) = sinх при любых х. П. ф. широко применяются в математике, физике и… …   Большой энциклопедический политехнический словарь

  • ПОЧТИ ПЕРИОДИЧЕСКАЯ ФУНКЦИЯ — функция, к рая может быть представлена обобщенным рядом Фурье. Существуют различные способы определения классов П. п. ф., основанные на понятиях замыкания, почти периода, сдвига. Каждый из классов П. п. ф. получается в результате замыкания в том… …   Математическая энциклопедия

Книги

  • Квантовая механика, Ефремов Ю. С.. Учебное пособие содержит систематическое изложение раздела «Квантовая механика» курса теоретической физики. Оно написано в соответствии с требованиями государственного стандарта и адресовано… Подробнее  Купить за 350 руб


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»