алгебраическое число это:

алгебраическое число
алгебраи́ческое число́
число, удовлетворяющее алгебраическому уравнению с целыми коэффициентами.
* * *
АЛГЕБРАИЧЕСКОЕ ЧИСЛО
АЛГЕБРАИ́ЧЕСКОЕ ЧИСЛО́, число, удовлетворяющее алгебраическому уравнению с целыми коэффициентами.

Энциклопедический словарь. 2009.

Смотреть что такое "алгебраическое число" в других словарях:

  • АЛГЕБРАИЧЕСКОЕ ЧИСЛО — число, удовлетворяющее алгебраическому уравнению с целыми коэффициентами …   Большой Энциклопедический словарь

  • алгебраическое число — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN polinomial number …   Справочник технического переводчика

  • Алгебраическое число — над полем   элемент алгебраического замыкания поля , то есть корень многочлена (не равного тождественно нулю) с коэффициентами из . Если поле не указывается, то предполагается поле рациональных чисел, то есть , в этом случае поле… …   Википедия

  • Алгебраическое число —         число а, удовлетворяющее алгебраическому уравнению a1αn+ ... + акα +an+1 = 0, где n ≥ 1, a1, ..., an, an+1 целые (рациональные) числа. Число α называется целым А. ч., если a1 = 1. Если многочлен f(x) = a1xn + ... + anx + an+1 не является… …   Большая советская энциклопедия

  • АЛГЕБРАИЧЕСКОЕ ЧИСЛО — число, удовлетворяющее алгебр. ур нию с целыми коэффициентами …   Естествознание. Энциклопедический словарь

  • АЛГЕБРАИЧЕСКОЕ ЧИСЛО — Ч комплексное (в частности, действительное) число, являющееся корнем многочлена с рациональными коэффициентами, из к рых не все равны нулю. Если Ч А. ч., то среди всех многочленов с рациональными коэффициентами, имеющих своим корнем, существует… …   Математическая энциклопедия

  • Целое алгебраическое число — Целыми алгебраическими числами называются комплексные (и в частности вещественные) корни многочленов с целыми коэффициентами и со старшим коэффициентом, равным единице. По отношению к сложению и умножению комплексных чисел, целые алгебраические… …   Википедия

  • Алгебраическое уравнение — (полиномиальное уравнение)  уравнение вида где многочлен от переменных  , которые называются неизвестными. Коэффициенты многочлена обычно берутся из некоторого поля , и тогда уравнение …   Википедия

  • Число (матем.) — Число, важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие Ч. изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним… …   Большая советская энциклопедия

  • АЛГЕБРАИЧЕСКОЕ УРАВНЕНИЕ — уравнение вида где многочлен n й степени от одного или нескольких переменных . А. у. с одним неизвестным наз. уравнение вида: Здесь п целое неотрицательное число, наз. коэффициентами уравнения и являются данными, хназ. неизвестным и является… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»