ЛАЗЕРНАЯ ХИМИЯ

ЛАЗЕРНАЯ ХИМИЯ
ЛАЗЕРНАЯ ХИМИЯ

       
хим. превращения, осуществляемые под воздействием лазерного излучения. Монохроматичность, направленность и высокая интенсивность лазерного излучения (см. ЛАЗЕР) позволяют осуществлять резонансное воздействие на исходные реагенты или продукты хим. реакций. Это обеспечивает точную локализацию, дозированность, абс. стерильность и высокую скорость ввода энергии в хим. реактор. При этом возможны исключение влияния стенок реактора и воздействие на хим. процессы, происходящие на поверхностях раздела фаз, на стенках реактора и т. п.
ЛАЗЕРНАЯ ХИМИЯ
Схема реакции тетрафторгидразина (N2F4) и окиси азота (NO) при нагревании (вверху) и при резонансном возбуждении связи N—F лазерным излучением (внизу). Спирали изображают хим. связи.
Если благодаря релаксац. процессам селективность лазерного возбуждения теряется, то лазерное воздействие носит тепловой характер. Если же влияние релаксац. процессов мало, то становится возможным селективное фотохим. воздействие, при к-ром хим. активность атомов и молекул возникает в результате поглощения ими фотонов (см. рис.). Т. к. энергия активации хим. реакций обычно велика (порядка неск. эВ), то селективное фотохим. действие наиболее легко наблюдается при возбуждении электронных состояний атомов и молекул лазерным излучением видимого и УФ диапазонов (пример — возможность получения соединений редкоземельных металлов). При возбуждении лазерами ИК диапазона колебательных уровней атомов, составляющих многоатомную молекулу, перспективна возможность раскачки и разрыва определ. связи между атомами, не затрагивающая остальных колебаний молекулы (ИК-лазерная фотохимия). Пока экспериментально реализована селективная ИК-лазерная многофотонная фотодиссоциация многоатомных молекул, напр. ВСl3, SP6, CF3B, CF3I, SiH4 и т. п., приводящая к лазерному разделению изотопов, очистке газов от малых примесей, получению радикалов и т. п. Использование хим. радикалов, полученных методом ИК-лазерной фотодиссоциации, в дальнейшем синтезе приводит к более чистым продуктам и увеличивает выход реакций, напр. при синтезе полимеров.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

ЛАЗЕРНАЯ ХИМИЯ

- хим. превращения, осуществляемые под воздействием лазерного излучения. Направленность и высокая интенсивность излучения (см. Лазер )обеспечивают высокую скорость ввода энергии в объём, где протекает хим. реакция, её точную пространственную и временную локализацию, дозированность и стерильность. При этом возможны как гомофазные реакции с полным исключением влияния стенок, ограничивающих объём, так и процессы, происходящие только на поверхности раздела фаз, в стенках реактора и т. п. Монохроматичность лазерного излучения позволяет осуществлять резонансное воздействие на исходные или конечные вещества, что даёт возможность реализации селективных процессов.

Лазерная фотохимия. Неизбежные релаксационные процессы приводят к тому, что введённая в реактор энергия лазерного излучения в конечном счёте преобразуется в тепловую. Если влияние релаксационных процессов мало (время релаксации велико), возможно селективное воздействие, при к-ром хим. активность атомов и молекул возникает непосредственно в результате поглощения ими фотонов. Влияние релаксации минимально при резонансном воздействии излучением видимого и УФ-диапазонов (2544-7.jpg , 2544-8.jpg- частота излучения). В этом случае столкновительная релаксация в газе, равно как и многофотонный распад возбуждённого состояния в конденсированной среде, затруднены, а излучательный спонтанный распад может быть скомпенсирован увеличением вероятности возбуждения с ростом интенсивности облучения. Возможность высокой эффективности возбуждения выгодно отличает лазерную фотохимию от обычной. С ростом интенсивности излучения важную роль начинают играть процессы ступенчатого и многофотонного возбуждения (см. Многофотонные процессы). Это позволяет возбуждать активные состояния атомов и молекул, одно-фотонные переходы в к-рые запрещены правилами отбора, а также создавать молекулы, возбуждённые заметно выше энергии диссоциации (по любой из связей). Характер и глубина фрагментации молекул при этом радикально меняются. Напр., при обычном УФ-фотолизе метиламина СН 3 Н 2 основными конечными продуктами являются NH3 и СН 2, а под действием излучения эксимерного лазера на ArF (длина волны 2544-9.jpg= = 193 нм) также НС и СН 3 С.

Особенностью лазерной фотохимии видимого и УФ-диапазонов является малая роль тепловых эффектов. Но в этих диапазонах большинство молекул имеет практически сплошные спектры поглощения (см. Молекулярные спектры), что затрудняет осуществление селективных процессов. Для атомных систем ситуация более благоприятна и селективные лазерные фотохимич. реакции возможны (пример - получение заданных соединений редкоземельных металлов, управление их валентностью).

В ИК-области, где расположены колебат. спектры молекул, спектральные линии узки и селективность воздействия возможна. Но в силу малости 2544-10.jpg колебат. релаксация облегчена. В газе, где она носит столкновительный характер, для исключения её влияния необходимо уменьшение давления р газа и длительности 2544-11.jpg лазерного воздействия. Как правило, произведение этих величин не должно превышать 10-9 с*Тор (2544-12.jpg10-8 с*Тор). При реальных длительностях лазерных импульсов (10-7-10-6 с) это приводит к недопустимо низким давлениям. Поэтому, а также в силу того, что энергия активации хим. реакции во много раз превышает 2544-13.jpg, ИК-лазерная фотохимия пока не реализована даже в газе. Перспективна комбинация ИК- и УФ-лазерных воздействий. Вместе с тем небольшие многоатомные молекулы, такие, как SiF4, SF6, BC13, CF2C12, CF3I, CF3Br и т. п., при достаточной высокой интенсивности излучения (105- 106 Вт/см 2) способны к многофотонному поглощению резонансных ИК-квантов вплоть до энергии диссоциации. При этом становится возможной селективная ИК-фотодиссоциация молекул, приводящая к лазерному разделению изотопов (см. Изотопов разделение), очистке газов от малых примесей и т. п.

Синтез неустойчивых соединений. Столкновительный обмен колебат. энергией между молекулами одного сорта происходит быстрее, чем между молекулами разных видов, в свою очередь обмен колебат. энергией между всеми молекулами идёт быстрее, чем обмен между колебательными и поступательными степенями свободы молекул. Это наряду со способностью молекул к многофотонному поглощению ИК-излучения позволяет найти режимы воздействия (плотность энергии облучения 0,01-1,0 Дж/см 2, 2544-14.jpg 10-6-10-7 с, р2544-16.jpg 0,1-1 Тор), при к-рых происходит изотопически селективная диссоциация и осуществляется управление синтезом радикалов. Отрыв колебат. темп-ры от поступательной, реализуемый в таких режимах, позволяет осуществлять синтез термически менее устойчивых соединений при ИК-фотолизе соединений, более устойчивых, напр. синтез CF3I при фотолизе CF3Br в атмосфере I.

Лазерная термохимия. В тех случаях, когда релаксационные процессы исключать не удаётся (длительное воздействие излучения, относительно большое давление газа, твёрдые тела), лазерное воздействие носит тепловой характер. Но резонансное поглощение излучения исходными или конечными продуктами хим. реакций влияет на ход хим. процессов и тогда, когда реагирующие атомы и молекулы находятся в состоянии локального теплового равновесия. Это происходит в силу обратной связи между химическими и тепловыми степенями свободы системы. Изменение в ходе реакции концентрации молекул, поглощающих лазерное излучение, приводит к изменению скорости ввода лазерной энергии, что меняет темп-ру реагентов, а значит, и скорость хим. реакций. Изменение интенсивности, длины волны или др. параметров лазерного излучения изменяет тип обратной связи, управляет динамикой процесса и составом продуктов реакции. Пример - связывание атм. азота в реакции с парами воды (синтез аммиака и азотной кислоты) при резонансном лазерном воздействии на насыщенные водяные пары в квазинепрерывном режиме. Увеличение выхода NH3 достигается при этом с помощью 100%-ной модуляции мощности поглощённого лазерного излучения в силу сложности динамики резонансного лазерного нагрева молекулярных газов.

В гетерогенных условиях, т. е. на границе раздела твёрдое тело - жидкость, твёрдое тело - газ и т. п., лазерная термохимия позволяет осуществлять обычно не идущие реакции осаждения металлов из растворов сложных солей, обращать термодинамически возможную последовательность протекания электродных процессов в растворах электролитов по отношению к электрохимич. ряду напряжений, создавать по выбору омические или выпрямляющие контакты металл - полупроводник (см. Контактные явления о полупроводниках), синтезировать совершенные полимерные плёнки (полиимидизация) и т. д.

Лит.: Тальрозе В. Л., Барашев П. П., Химическое действие лазерного излучения, "Ж. Всесоюз. хим. общества им. Д. И. Менделеева", 1973, т. 18, с. 15; Карлов Н. В., Прохоров А. М., Лазерное разделение изотопов, "УФН", 1976, т. 118, с. 58.1; Бункин Ф. В., Кириченко Н. А., Лукьянчук Б. С., Термохимическое действие лазерного излучения, "УФН", 1982, т. 138, с. 45; Летохов В. С., Нелинейные селективные фотопроцессы в атомах и молекулах, М., 1983; Молин Ю. Н., Панфилов В. Н., Петров А. К., Инфракрасная фотохимия, Новосиб., 1985; Акулин В. М., Карлов Н. В., Интенсивные резонансные взаимодействия в квантовой электронике, М., 1987. Н. В. Карлов, Б. С. Лукъянчук.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "ЛАЗЕРНАЯ ХИМИЯ" в других словарях:

  • Лазерная химия — раздел физической химии, изучающий химические процессы, которые возникают под действием лазерного излучения и в которых специфические свойства лазерного излучения играют решающую роль, а также хемолазерные процессы (химические лазеры).… …   Википедия

  • ЛАЗЕРНАЯ ХИМИЯ — изучает химические процессы, стимулируемые лазерным излучением. С помощью лазеров возможно разделение изотопов, получение особо чистых и некоторых дорогостоящих веществ, в т. ч. для микроэлектроники …   Большой Энциклопедический словарь

  • лазерная химия — изучает химические процессы, стимулируемые лазерным излучением. С помощью лазеров возможно разделение изотопов, получение особо чистых и некоторых дорогостоящих веществ, в том числе для микроэлектроники. * * * ЛАЗЕРНАЯ ХИМИЯ ЛАЗЕРНАЯ ХИМИЯ,… …   Энциклопедический словарь

  • лазерная химия — lazerinė chemija statusas T sritis radioelektronika atitikmenys: angl. laser chemistry vok. Laserchemie, f rus. лазерная химия, f pranc. chimie laser, f …   Radioelektronikos terminų žodynas

  • лазерная химия — lazerinė chemija statusas T sritis chemija apibrėžtis Mokslas apie lazerių sužadintas chemines reakcijas ir cheminiuose lazeriuose vykstančius procesus. atitikmenys: angl. laser chemistry rus. лазерная химия; лазерохимия …   Chemijos terminų aiškinamasis žodynas

  • лазерная химия — [chemistry of lasers] раздел химии, изучающий химические превращения и физико химические процессы в веществе под действием лазерного излучения Лазерную химию подразделяют на: селективную (резонансную), называемую также лазерной фотохимией, и… …   Энциклопедический словарь по металлургии

  • ЛАЗЕРНАЯ ХИМИЯ — изучает хим. процессы, стимулируемые лазерным излучением, в к рых решающую роль играют специфич. св ва лазерного излучения. Так, высокая монохроматичность лазерного излучения позволяет селективно возбуждать молекулы одного вида, при этом молекулы …   Химическая энциклопедия

  • ЛАЗЕРНАЯ ХИМИЯ — изучает хим. процессы, стимулируемые лазерным излучением. С помощью лазеров возможно разделение изотопов, получение особо чистых и нек рых дорогостоящих в в, в т. ч. для микроэлектроники …   Естествознание. Энциклопедический словарь

  • Химия почв — Химия почв  это раздел почвоведения, изучающий химические основы почвообразования и плодородия почв. Основой для решения этих вопросов служит исследование состава, свойств почв и протекающих в почвах процессов на ионно молекулярном и… …   Википедия

  • Химия одноуглеродных молекул — (С1 химия) раздел химии, изучающей различные классы веществ, в состав молекулы которых входит только один атом углерода. Как отдельная отрасль знаний С1 химия появляется с развитием перспективных технологий получения углеродсодержащего сырья,… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»