ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ
ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ

- электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фа-радеем (М. Faraday) в 1832. Дж. Максвелл (J. Maxwell) в 1865 теоретически показал, что эл.-магн. колебания распространяются в вакууме со скоростью света. В 1888 макс-велловская теория Э. в. получила подтверждение в опытах Г. Герца (Н. Hertz), что сыграло решающую роль для её утверждения.

5111-1.jpg

Теория Максвелла позволила установить, что радиоволны, свет, рентг. излучение и гамма-излучение представляют собой Э. в. с разл. длиной волны l (табл.), причём между соседними диапазонами шкалы Э. в. нет резких границ (рис.).

5111-2.jpg

Особенности Э. в., законы их возбуждения и распространения описываются Максвелла уравнениями. Если в какой-то области пространства существуют электрич. заряды е и токи I, то изменение их со временем t приводит к излучению Э. в. На характер распространения Э. в. существенно влияет среда, в к-рой они распространяются. Э. в. могут испытывать преломление, в реальных средах имеет место дисперсия волн, вблизи неоднородностей наблюдаются дифракция волн, интерференция волн, полное внутреннее отражение и др. явления, свойственные волнам любой природы. Пространств. распределение эл.-магн. полей, временные зависимости E(t) и H(t), определяющие тип волн (плоские, сферические и др.), вид поляризации и др. особенности Э. в., задаются, с одной стороны, характером источника излучения, с другой - свойствами среды, в к-рой они распространяются. В случае однородной и изотропной среды вдали от зарядов и токов, создающих эл.-магн. поле, ур-ния Максвелла приводят к волновым уравнениям:

5111-3.jpg

описывающим, в частности, распространение плоских мо-нохроматич. Э. в.:

5111-4.jpg

Здесь e-диэлектрич., m-магн. проницаемости среды, Е0 и H0- амплитуды колебаний электрич. и магн. полей, w = 2pv - круговая частота этих колебаний, j - произвольный сдвиг фазы, k - волновой вектор, r - радиус-вектор точки, 5111-5.jpg -оператор Лапласа, E | H | k, Н0 =5111-6.jpg

Если среда неоднородна или содержит поверхности, на к-рых изменяются её электрич. либо магн. свойства, или если в пространстве имеются проводники, то тип возбуждаемых и распространяющихся Э. в. может существенно отличаться от плоской линейно поляризованной волны. Э. в. могут распространяться вдоль направляющих поверхностей (поверхностные волны), в передающих линиях, в полостях, образованных хорошо проводящими стенками (см. Волновод металлический, Световод), в квазиоптич. линиях (см. Квазиоптика).

Характер изменения во времени Е и Н определяется законами изменения тока I(t) и зарядов e(t), возбуждающих Э. в. Однако форма волны в общем случае не следует I(t )или e(t). Она в точности повторяет форму тока только в случае линейной среды, если I=I0 sin wt. Т. к. волны любой формы можно представить в виде суммы гармонич. составляющих, то для линейных сред, для к-рых справедлив принцип суперпозиции, все задачи излучения, распространения и поглощения Э. в. произвольной формы сводятся к решению задач для гармонич. Э. в.

В изотропном пространстве скорость распространения гармонич. Э. в., т. е. фазовая скоростьu= c/5111-7.jpg. При наличии дисперсии скорость переноса энергии (групповая скорость )может отличаться от u. Плотность потока энергии, переносимой Э. в., определяется Пойнтинга вектором S=(c/4p)[EH]. Т. <к. в изотропной среде векторы Е, Н и k образуют правовинтовую систему, то S совпадает с направлением распространения Э. в. В анизотропной среде (в т. ч. вблизи проводящих поверхностей) S может не совпадать с направлением распространения Э. в.

Простейшим излучателем Э. в. является электрич. диполь- отрезок проводника длиной l<<l, по к-рому протекает ток i=i0 sin wt. На расстоянии от диполя r>>l образуется волновая зона (зона излучения), где распространяются сферич. волны (см. Антенна).

Создание мощных источников радиоволн во всех диапазонах, а также появление квантовых генераторов, в частности лазеров, позволили достичь напряжённостей электрич. поля в Э. в., существенно изменяющих свойства сред, в к-рых происходит их распространение. Это привело к развитию нелинейной теории Э. в. При распространении Э. в. в нелинейной среде (e и m зависят от E и H) её форма изменяется. Если дисперсия мала, то по мере распространения Э. в. они обогащаются высшими гармониками и их форма постепенно искажается (см. Нелинейная оптика). Напр., после прохождения синусоидальной Э. в. характерного пути (величина к-рого определяется степенью нелинейности среды) может сформироваться ударная волна, характеризующаяся резкими изменениями Е и Н (разрывами) с их последующим плавным возвращением к первонач. величинам. Большинство нелинейных сред, в к-рых Э. в. распространяются без сильного поглощения, обладает значит. дисперсией, препятствующей образованию ударных Э. в. Поэтому образование ударных волн возможно лишь в диапазоне l от неск. см до длинных волн. При наличии дисперсии в нелинейной среде возникающие высшие гармоники распространяются с разл. скоростью и существ. искажения формы исходной волны не происходит. Образование интенсивных гармоник и взаимодействие их с исходной волной может иметь место лишь при специально подобранных законах дисперсии.

Э. в. разл. диапазонов l характеризуются разл. способами возбуждения и регистрации. Они по-разному взаимодействуют с веществом. Процессы излучения и поглощения Э. в. от самых длинных волн до ИК-излучения достаточно полно описываются соотношениями электродинамики. На более высоких частотах доминируют процессы, имеющие существенно квантовую природу, а в оп-тич. диапазоне и тем более в диапазонах рентг. и g-лучей излучение и поглощение Э. в. могут быть описаны только на основе представлений о дискретности этих процессов. Во мн. случаях эл.-магн. излучение ведёт себя не как набор монохроматич. Э. в. с частотой со и волновым вектором k, а как поток квазичастиц-фотонов с энергией (2p/h)w и импульсом р=5111-8.jpgw/ с. Волновые свойства проявляются, напр., в явлениях дифракции и интерференции, корпускулярные - в фотоэффекте и Комптона эффекте.

Лит.: Тамм И. Е., Основы теории электричества, 10 изд., М., 1989; Ландсберг Г. С., Оптика, 5 изд., М., 1976; Ландау Л. Д., Лифшиц Е. М., Теория поля, 7 изд., М., 1988; их же, Электродинамика сплошных сред, 2 изд., М., 1982. В. В. Мигулин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Нужно сделать НИР?

Полезное


Смотреть что такое "ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ" в других словарях:

  • ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ — электромагнитные колебания, распространяющиеся в пр ве с конечной скоростью. Существование Э. в. было предсказано англ. физиком М. Фарадеем в 1832. Англ. физик Дж. Максвелл в 1865 теоретически показал, что эл. магн. колебания распространяются в… …   Физическая энциклопедия

  • Электромагнитные волны — Электромагнитные волны. Шкала электромагнитных волн (цифрами указаны длины волн в метрах). ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ, электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды. В вакууме скорость… …   Иллюстрированный энциклопедический словарь

  • ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ — электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды. В вакууме Скорость распространения электромагнитной волны с 300000 км/с (см. Скорость света). В однородных изотропных средах направления… …   Большой Энциклопедический словарь

  • ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ — (Electromagnetic waves). В пространстве, окружающем провод, по которому течет постоянный или переменный ток, возникает особое состояние среды, называемое электромагнитным полем. Если переменный ток имеет высокую частоту, а провод достаточно… …   Морской словарь

  • Электромагнитные волны — процесс распространения взаимосвязанных друг с другом электрического и магнитного полей, сопровождающийся переносом электромагнитной энергии.... Источник: ГОСТ Р 51317.4.3 99 (МЭК 61000 4 3 95). Государственный стандарт Российской Федерации.… …   Официальная терминология

  • электромагнитные волны — электромагнитное поле, распространяющееся в пространстве с конечной скоростью, зависящей от свойств среды. В вакууме скорость распространения электромагнитной волны с≈300 000 км/с (см. Скорость света). В однородных изотропных средах направления… …   Энциклопедический словарь

  • Электромагнитные волны — Классическая электродинамика Магнитное поле соленоида Электричество · Магнетизм Электростатика Закон Кулона …   Википедия

  • электромагнитные волны — ▲ поперечные волны ↑ эфир электромагнитные волны поперечные колебания эфира; испускаются ускоренно движущимся электрическим зарядом. квант. гамма квант. радиоволны. тепловое излучение электромагнитное излучение, возникающее за счет внутренней… …   Идеографический словарь русского языка

  • электромагнитные волны — elektromagnetinės bangos statusas T sritis apsauga nuo naikinimo priemonių apibrėžtis Elektromagnetinių laukų virpesiai, plintantys aplinka baigtiniu greičiu priklausomai nuo aplinkos savybių; tuštumoje jos plinta šviesos greičiu (apie 300 tūkst …   Apsaugos nuo naikinimo priemonių enciklopedinis žodynas

  • Электромагнитные волны —         Электромагнитные колебания, распространяющиеся в пространстве с конечной скоростью. Существование Э. в. было предсказано М. Фарадеем (См. Фарадей) в 1832. Дж. Максвелл в 1865 теоретически показал, что электромагнитные колебания не… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»