ЭПИТАКСИЯ

ЭПИТАКСИЯ
ЭПИТАКСИЯ

       
(от греч. epi — на и taxis — расположение, порядок), ориентированный рост одного кристалла на поверхности другого (подложки). Различают гетероэпитаксию, когда в-ва подложки и нарастающего кристалла различны, и г о м о э п и т а к с и ю (автоэпитаксию), когда они одинаковы. Ориентированный рост кристалла внутри объёма другого наз. эндотаксией. Э. наблюдается при кристаллизации, коррозии и т. д. Определяется условиями сопряжения крист. решёток нарастающего кристалла и подложки, причём существенно их структурно-геом. соответствие. Легче всего сопрягаются в-ва, кристаллизующиеся в одинаковых или близких структурных типах, напр. гранецентрированного куба (Ag) и решётки типа NaCl, но Э. можно получить и для различающихся структур.
При описании Э. указываются плоскости срастания и направления в них; напр., (112) (111) Si || (1100) (0001) Аl2О3 означает, что грань (111) кристалла Si с решёткой типа алмаза нарастает параллельно грани (0001) кристалла Аl2O3, причём кристаллографич. направление (112) в нарастающем кристалле параллельно направлению (1100) подложки (см. КРИСТАЛЛЫ, ИНДЕКСЫ КРИСТАЛЛОГРАФИЧЕСКИЕ).
Э. особенно легко осуществляется, если разность параметров обеих решёток не превышает 10%. При больших расхождениях сопрягаются наиб. плотноупакованные плоскости и направления. При этом часть плоскостей одной из решёток не имеет продолжения в другой; края таких оборванных плоскостей образуют т. н. дислокации несоответствия, обычно образующие сетку. Плотность дислокаций в сетке тем больше, чем больше разность параметров сопрягающихся решёток. Меняя параметр одной из решёток (добавлением примеси), можно управлять кол-вом дислокаций в эпитаксиально нарастающем слое.
Э. происходит т. о., чтобы суммарная энергия границы, состоящей из участков: подложка — кристалл, кристалл — маточная среда и подложка — среда, была минимальной. У в-в с близкими структурами и параметрами (напр., Au на Ag) образование границы сопряжения энергетически невыгодно м нарастающий слой имеет в точности структуру подложки (псевдоморфизм). С ростом толщины упруго напряжённой псевдоморфной плёнки запасённая в ней энергия растёт, и при толщинах более критической (для Au на Ag это 600 A) нарастает плёнка с собств. структурой.
Помимо структурно-геом. соответствия, сопряжение данной пары в-в при Э. зависит от темп-ры процесса, степени пересыщения (переохлаждения) кристаллизующегося в-ва в среде, от совершенства подложки, чистоты её поверхности и др. условий кристаллизации. Для разных в-в и условий существует т. н. эпитаксиальная темп-ра, ниже к-рой нарастает только неориентированная плёнка.
Процесс Э. обычно начинается с возникновения на подложке отд. кристалликов, к-рые срастаются (коалесцируют), образуя сплошную плёнку. На одной и той же подложке возможны разные типы нарастания, напр. (100) (100) Аи У (100) (100) NaCl и (110) (111) Au || (110) (100) NaCl. Наблюдалась также Э. на подложке, покрытой тонкой плёнкой (несколько сотен А) С, О, О2 и др., что можно объяснить реальной структурой кристалла подложки, влияющей на промежуточный слой. Возможна Э. на аморфной подложке, на к-рой создан кристаллографически симметричный микрорельеф (графоэпитаксия).
Э. широко используется в микроэлектронике (транзисторы, интегр. схемы, светодиоды и т. д.), в квант. электронике (многослойные ПП гетероструктуры, (см. ГЕТЕРОПЕРЕХОД)), в устройствах интегр. оптики, в вычислит. технике (элементы памяти с цилиндрическими магнитными доменами) и т. п.

Физический энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

ЭПИТАКСИЯ

(от греч. epi - на, над, при и taxis-расположение, порядок) - процесс наращивания монокристал-лич. слоев вещества на подложку (кристалл), при к-ром кристаллографич. ориентация наращиваемого слоя повторяет кристаллографич. ориентацию подложки. Э. позволяет получать такие тонкие (1 нм-10 мкм) однородные мо-нокристаллич. слои - т. <н. э п и т а к с и а л ь н ы е с л о и (ЭС) - любого типа проводимости и любого уд. электрич. сопротивления, какие невозможно создать иным способом. Различают г е т е р о э п и т а к с и ю, когда вещества подложки и наращиваемого слоя различны по хим. составу и кристаллич. структуре, и г о м о э п и т а к с и ю (автоэпита-ксию), когда подложка и наращиваемый слой одинаковы по хим. составу или отличаются только примесным составом. Э. используется в технологии производства широкого класса электронных приборов и устройств для получения (в виде плёнок и многослойных структур) эпитаксиальных слоев элементарных полупроводников, соединений типа AIII BV, AII BVI, AIV BVI, гранатов, ортоферритов и др. материалов.

Свойства ЭС во многом определяются условиями сопряжения кристаллич. решёток наращиваемого слоя и подложки, причём существенно их структурно-геом. соответствие; легче всего сопрягаются вещества, кристаллич. структуры к-рых одинаковы или близки (напр., вещества с кристаллич. структурой сфалерита и алмаза). Э. легко осуществляется, если разность постоянных решёток не превышает 10%; в этом случае тонкий наросший ЭС продолжает атомные плоскости подложки (возникает псевдо-морфный слой). При больших расхождениях сопрягаются наиб. плотно упакованные плоскости. При разл. решётках сопрягаемых веществ в ЭС возникают дислокации несоответствия. Плотностью дислокаций несоответствия можно управлять, меняя параметры решётки растущего кристалла (напр., введением примесей) и получая т. <о. бездислока-ционные ЭС с высокой подвижностью и малой плотностью носителей заряда. Помимо структурно-геом. соответствия сопряжение пар веществ зависит от темп-ры процесса (темп-рой Э. наз. предельно низкая темп-pa, при к-рой ещё возможно ориентированное нарастание вещества), степени пересыщения осаждаемого вещества, совершенства подложки и чистоты её поверхности. Поэтому подложку перед Э. обычно подвергают механич., хим. или радиац. обработке. ЭС растёт за счёт атомов и молекул, составляющих адсорбц. слой, и скорость роста зависит от пересыщения в этом слое.

Э. возможна из любой фазы: газовой (газофазная Э.- ГФЭ), жидкой (жидкостная, или жидкофазная, Э.- ЖФЭ) и твёрдой (твердофазная Э.- ТФЭ). Преимуществ. развитие получили ГФЭ и ЖФЭ.

Методы ГФЭ делятся на химические и физические. Хим. методы ГФЭ основаны на осаждении из газовой фазы вещества, полученного в результате след. хим. реакций: восстановления хлоридов Si и Ge водородом (напр., SiCl4 + 2H2 = Si + 4HCl - т. <н. хлоридный процесс); пиро-литич. разложения моносилана (SiH4 = Si + 2H2); диспро-порционирования дииодидов и дихлоридов Si и Ge (напр., 2SiCl25126-79.jpgSi + SiCl4) и др. Процессы осуществляются в реакторах (рис. 1); газовая система обеспечивает подачу в реакторную камеру газовой смеси требуемого состава. Добавляя к газовой смеси соединения легирующих элементов (напр., AsCl3, B2H6), выращивают ЭС п- или p -типа соответственно. Темп-pa процесса определяется кинетикой хим. реакции и обычно находится в пределах 800-1300° С.

5126-80.jpg

Рис. 1. Схемы горизонтальной (вверху) и вертикальной (внизу) реакторных камер для эпитаксии из газовой фазы хлоридным методом: 1- реакторная камера; 2- нагрева тель; 3 - подставка для подложек; 4- подложка.


К физ. методам относят методы термич. осаждения из молекулярных пучков в вакууме, мгновенного испарения, "горячей стенки", а также методы катодного распыления и осаждения. По методу термич. осаждения из молекулярных пучков испаряемое вещество нагревается до требуемой темп-ры (выше или ниже темп-ры плавления испаряемого вещества в зависимости от упругости пара в точке плавления) в сверхвысоком вакууме (<=1,3.10-8 Па), при этом его атомы и молекулы попадают на подложку, где и происходит их конденсация. Наиб. совершенным является электронно-лучевой способ нагрева, отчего такой метод получил название м о л е к у л я р н о-л у ч е в о й э п и т а кс и и (МЛЭ). Этот метод позволяет в процессе осаждения контролировать структуру и состояние поверхности подложек, регулировать плотность молекулярного потока, т. е. скорость роста кристаллов, обеспечивать возможность при помощи маски выполнять локальную кристаллизацию, получать резкие межслойные границы, выращивать сверхтонкие (1 -100 нм) эпитаксиальные слои (плёнки) полупроводников, диэлектриков и металлов, создавать сверхрешётки (последовательность большого числа чередующихся слоев разного состава толщиной 5-10 нм), осуществлять многослойную застройку решётки. На основе плёнок, полученных методом молекулярно-лучевой эпита-ксии, создают оптоэлектронные интегральные схемы, сверхбыстродействующие большие интегральные схемы, фотоприёмники и лазеры на гетероструктурах, фотокатоды с отрицат. электронным сродством, др. приборы и устройства.

Метод мгновенного испарения близок к методу осаждения из молекулярных пучков и заключается в том, что исходное вещество непрерывно и равномерно поступает в испаритель, между ним и составом газовой фазы поддерживается термодинамич. равновесие. Обычно этот метод используют для получения ЭС материалов, компоненты к-рых обладают разл. упругостями пара (напр., GaP, GaAlAs, GaAsP).

Метод катодного распыления отличается от термич. методов тем, что исходным веществом служит вещество нагреваемого твёрдого тела. В осн. применяют катодное распыление с помощью тлеющего разряда (рис. 2). Процесс идёт в среде инертного газа при давлениях 0,133- 13,3 Па, при более низкой, чем в методах термич. испарения, эпитаксиальной темп-ре.

5127-1.jpg

Рис. 2. Схема камеры для катодного распыления: 1- катод; 2- подложка; 3 - анод; 4 - плазма Ar+.


Метод катодного осаждения сочетает методы катодного распыления и осаждения из молекулярных пучков. Вещество (рис. 3) испаряется термич. путём, подложка служит отрицат. электродом и располагается в зоне плазмы, поддерживаемой постоянным током или ВЧ-разрядом. Испарившиеся атомы ионизируются в плазменном пространстве и осаждаются на катоде подложки. С сер. 1980-х гг. развивается метод осаждения веществ из ионизир. пучков, позволяющий получить ЭС, легированные летучими примесями при сравнительно низких темп-рах.

5127-2.jpg

Рис. 3. Схема метода катодного осаждения: 1 - источник; 2 - подложка; 3 -плазма.

Методы ЖФЭ основаны на кристаллизации из раствора в расплаве и различаются в зависимости от способа удаления раствора с поверхности плёнки [простым сливом (рис. 4, а), принудительным удалением (рис. 4, б) и без удаления]. ЖФЭ можно проводить при относительно невысоких темп-рах (400-500 °С). ЖФЭ позволяет получить многослойные эпитаксиальные структуры и плёнки определённой конфигурации (с помощью маски из SiO2).

Методы ТФЭ основаны на процессах ориентированного роста ЭС в двух-, трёхслойных системах при изотермич. отжиге. Один из слоев - монокристаллич. подложка, другие- аморфные и поликристаллич. слои полупроводников и металлов. Для сохранения расположенных в подложке приборных структур применяют импульсную термич. обработку.

5127-3.jpg

Рис. 4. Схема устройства для жидкофазной эпитаксии со сливом раствора с поверхности плёнки (вверху) и принудительным удалением раствора (внизу): 1 - подложка; 2- контейнер; 3- печь сопротивления; 4- кварцевая ампула; 5 - термопара; 6-9- растворы; 10- ползунок; 11- кассета.

За последние годы получили широкое распространение разл. методы газофазной Э. из металлоорганич. соединений (МОС). Метод МОС-гидридной Э. при пониженном давлении в реакторе является наиб. универсальным для синтеза большинства соединений AIIIBV и по основным параметрам не уступает МЛЭ, а по производительности, степени совершенства поверхности эпитакси-альных плёнок, относительно более простому аппаратному оформлению выгодно отличается от последнего. Данный метод используется для новейших разработок и производства полупроводниковых СВЧ- и оптоэлектрон-ных приборов, напр. транзисторов с высокой подвижностью электронов, где реализуется эффект двумерного электрон. газа на гетерограницах GaAlAs/GaAs, InGaAs/InP, лазеров на основе гетероструктур GaAlAs/GaAs, InGaAs/InP с квантовыми ямами, приборов на основе четверных соединений типа InGaAsP с напряжёнными слоями, разл. наноразмерных гетероструктур с чередующимися слоями и др. Освоение разл. модификаций методов МОС-гидридной Э. и МЛЭ в сочетании с хим. пучковой Э. и атомно-слоевой Э. позволяет охватить практически все новые задачи полупроводникового материаловедения.

Лит.: Чистяков Ю. Д., Райнова Ю. П., Физико-химические основы технологии микроэлектроники, М., 1979; Современная кристаллография, т. 3, М., 1980; Денисов А. Г., Кузнецов Н. А., Макаренко В. А., Оборудование для молекулярно-лучевой эпи-таксии, "Обзоры по электронной технике", сер. 7, в. 17, М., 1981; Херман М., Полупроводниковые сверхрешетки, пер. с англ., М., 1989; Молекулярно-лучевая эпитаксия и гетероструктуры, под ред. Л. Ченга, К. Плога, пер. с англ., М., 1989.

Г. С. Дорджин, Л. М. Можаров.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. . 1988.


.

Игры ⚽ Поможем написать реферат
Синонимы:

Полезное


Смотреть что такое "ЭПИТАКСИЯ" в других словарях:

  • Эпитаксия — это закономерное нарастание одного кристаллического материала на другой (от греч. επι на и ταξισ упорядоченность), т.е. ориентированный рост одного кристалла на поверхности другого (подложки). Строго говоря, рост всех кристаллов можно назвать… …   Википедия

  • ЭПИТАКСИЯ — (от эпи... и греч. taxis расположение) ориентированный рост одного монокристалла на поверхности другого (подложки). Вещества могут быть одинаковы (гомоэпитаксия, или автоэпитаксия) или различны (гетероэпитаксия). Эпитаксия определяется условием… …   Большой Энциклопедический словарь

  • эпитаксия — сущ., кол во синонимов: 2 • гетероэпитаксия (1) • гомоэпитаксия (2) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • ЭПИТАКСИЯ — закономерное срастание к лов веществ разл. состава, связанное с близостью строения их кристаллических структур или отдельных плоских сеток и рядов решеток срастающихся м лов. Напр., сагенитовая решетка в биотите и др. м лах, пегматитовые… …   Геологическая энциклопедия

  • эпитаксия — Процесс, при котором тонкий слой монокристаллического материала осаждается на монокристаллической подложке; эпитаксиальный рост происходит таким образом, что кристаллографическая структура подложки воспроизводится в растущем слое; в растущем слое …   Справочник технического переводчика

  • эпитаксия — Термин эпитаксия Термин на английском epitaxy Синонимы Аббревиатуры Связанные термины гетероструктура полупроводниковая, гетероэпитаксия, гомоэпитаксия, подложка, эпитаксия твердофазная, эпитаксия газофазная, эпитаксия жидкофазная, эпитаксия… …   Энциклопедический словарь нанотехнологий

  • эпитаксия — (от эпи... и греч. táxis  расположение), ориентированный рост одного монокристалла на поверхности другого (подложки). Вещества могут быть одинаковы (гомоэпитаксия, или автоэпитаксия) или различны (гетероэпитаксия). Эпитаксия определяется условием …   Энциклопедический словарь

  • Эпитаксия — [epitaxy] ориентированный рост одного кристалла на поверхности другого (подложки). Различают гетероэпитаксию, когда вещества подложки и нарастающего кристалла различны, и гомоэпитаксию (автоэпитаксию), когда они одинаковы. Ориентированный рост… …   Энциклопедический словарь по металлургии

  • эпитаксия —  Epitaxy  or Epi  Эпитаксия   Ориентированный рост одного кристалла на поверхности другого (подложки). Различают гетероэпитаксию, когда вещества подложки и нарастающего кристалла различны, и гомоэпитаксию (автоэпитаксию), когда они одинаковы.… …   Толковый англо-русский словарь по нанотехнологии. - М.

  • Эпитаксия — Epitaxy Эпитаксия. Рост кристаллов при электролизе или из паровой фазы, при котором ориентация образующихся отложений непосредственно связана кристаллическими ориентациями в основной кристаллической решетке. (Источник: «Металлы и сплавы.… …   Словарь металлургических терминов


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»