МАТЕМАТИЧЕСКАЯ ЛОГИКА

МАТЕМАТИЧЕСКАЯ ЛОГИКА
МАТЕМАТИЧЕСКАЯ ЛОГИКА
— одно из названий современной логики, пришедшей во втор. пол. 19 — нач. 20 в. на смену традиционной логике. В качестве др. названия современного этапа в развитии науки логики используется также термин символическая логика. Определение «математическая» подчеркивает сходство новой логики с математикой, основывающееся прежде всего на применении особого символического языка, аксиоматического метода, формализации.
М.л. исследует предмет формальной логики методом построения специальных формализованных языков, или исчислений. Они позволяют избежать двусмысленной и логической неясности естественного языка, которым пользовалась при описании правильного мышления традиционная логика. Новые методы дали логике такие преимущества, как большая точность формулировок, возможность изучения более сложных с т.зр. логической формы объектов. Многие проблемы, исследуемые в М.л., вообще невозможно сформулировать с использованием только традиционных методов.
Иногда термин «М.л.» употребляется в более широком смысле, охватывающем исследование свойств дедуктивных теорий, именуемое металогикой или метаматематикой.

Философия: Энциклопедический словарь. — М.: Гардарики. . 2004.

МАТЕМАТИЧЕСКАЯ ЛОГИКА
        см. в ст. Логика.

Философский энциклопедический словарь. — М.: Советская энциклопедия. . 1983.

МАТЕМАТИЧЕСКАЯ ЛОГИКА
см. Логистика.

Философский энциклопедический словарь. 2010.

МАТЕМАТИЧЕСКАЯ ЛО́ГИКА
логика, развившаяся в точную науку, применяющую математич. методы, или, согласно П. С. Порецкому, логика по предмету, математика по методам. Идея построения М. л. высказывалась впервые Лейбницем. Но лишь в 19 в. в соч. Буля "Математический анализ логики" (G."Boole, "The mathematical analysis of logic", 1847) была начата систематич. разработка этой науки. Дальнейшее развитие М. л. в значит. мере стимулировалось потребностями математики, ставившей логич. проблемы, для решения к-рых старые средства классич. формальной логики были непригодны. Одной из этих проблем явилась проблема недоказуемости 5-го постулата Эвклида в геометрии. Эта проблема связана с аксиоматическим методом, являющимся наиболее распространенным способом логич. систематизации математики. Он требует точной формулировки основных, принимаемых без доказательства положений развертываемой теории – т.н. а к с и о м, из к-рых все дальнейшее ее содержание логически выводится. Математич. теории, развиваемые т.о., наз. а к с и о м а т и ч е с к и м и. Классич. прототипом такого построения математич. теории является эвклидово построение геометрии.
В связи со всякой аксиоматич. теорией естественно возникает ряд логич. проблем. В частности, возникает проблема л о г и ч е с к о й н е з а в и с и м о с т и аксиом данной теории, состоящая в установлении того, что ни одна из аксиом теории не может быть чисто логически выведена из остальных аксиом. Для эвклидовой геометрии в течение двух тысячелетий оставался открытым вопрос о логич. независимости 5-го постулата Эвклида. Было предпринято много тщетных попыток вывести его из остальных аксиом эвклидовой геометрии, пока, наконец, в работах Н. И. Лобачевского не было впервые в явной форме высказано убеждение в невозможности осуществить такой вывод. Это убеждение было подкреплено Лобачевским построением новой геометрии, в корне отличной от эвклидовой. В геометрии Лобачевского, тщательно разработанной ее творцом, не обнаруживалось противоречий; это вселяло уверенность в том, что противоречия и вообще не могут возникнуть, как бы далеко ни было продвинуто выведение следствий из аксиом новой геометрии. Впоследствии нем. математиком Ф. Клейном было доказано, что п р о т и в о р е ч и я не могут возникнуть в геометрии Лобачевского, если они не могут возникнуть в эвклидовой г е о м е т р и и (см. Метод аксиоматический). Так возникли и были частично решены исторически первые проблемы "недоказуемости" и непротиворечивости в аксиоматич. теориях.
Точная постановка таких проблем, их рассмотрение как проблем математических требуют уточнения понятия доказательства. Всякое математич. доказательство состоит в последовательном применении тех или иных логич. средств к исходным положениям. Но логич. средства не представляют собой чего-то абсолютного, раз навсегда установленного. Они вырабатывались многовековой человеческой практикой; "...практическая деятельность человека миллиарды раз должна была приводить сознание человека к повторению разных логических фигур, д а б ы эти фигуры м о г л и получить значение а к с и о м" (Ленин В. И., Соч., т. 38, с. 181–82). Человеческая практика является, однако, на каждом историч. этапе ограниченной, а объем ее все время растет. Логич. средства, удовлетворительно отражавшие человеческое мышление на данном этапе или в данной области, могут уже оказаться неподходящими на след. этапе или в др. области. Тогда в зависимости от изменения содержания рассматриваемого предмета изменяется и способ его рассмотрения – изменяются логич. средства. Это в особенности относится к математике с ее далеко идущими многостепенными абстракциями. Здесь бессмысленно говорить о логич. средствах как о чем-то данном в своей совокупности, как о чем-то абсолютном. Зато имеет смысл рассмотрение логич. средств, применяемых в той же или иной конкретной обстановке, встречающейся в математике. Их установление для к.-л. аксиоматич. теории и составляет искомое уточнение понятия доказательства для этой теории.
Важность этого уточнения для развития математики выявилась в особенности за последнее время. Разрабатывая множеств теорию, ученые столкнулись с рядом трудных проблем, в частности с проблемой о мощности континуума, выдвинутой Г. Кантором (1883), к к-рой до 1939 не было найдено удовлетворит. подходов. Др. проблемы, столь же упорно не поддававшиеся решению, встретились в дескриптивной теории множеств, разрабатываемой сов. математиками. Постепенно выяснилось, что трудность этих проблем является логической, что она связана с неполной выявленностью применяемых логич. средств и аксиом и что единств. путем к ее преодолению является уточнение тех и других. Выяснилось, т.о., что разрешение этих задач требует привлечения М. л., к-рая, следовательно, является наукой, необходимой для развития математики. В наст. время надежды, возлагавшиеся на М. л. в связи с этими проблемами, уже оправдали себя. В отношении проблемы континуума очень существенный результат был получен К. Гёделем (1939), доказавшим непротиворечивость обобщенной континуум-гипотезы Кантора с аксиомами теории множеств при условии, что эти последние непротиворечивы. В отношении же ряда трудных проблем дескриптивной теории множеств важные результаты получены П. С. Новиковым (1951).
Уточнение понятий доказательства в аксиоматич. теории является важным этапом ее развития. Теории, прошедшие этот этап, т.е. аксиоматич. теории с установленными логич. средствами, называют д е д у к т и в н ы м и т е о р и я м и. Лишь для них допускают точную формулировку интересующие математиков проблемы доказуемости и непротиворечивости в аксиоматич. теориях. Для решения этих проблем в совр. М. л. применяется метод формализации доказательств. Идея метода формализации доказательств принадлежит нем. математику Д. Гильберту. Проведение этой идеи стало возможным благодаря предшествовавшей разработке М. л. Булем, Порецким, Шрёдером, Фреге, Пеано и др. В наст. время метод формализации доказательств является мощным орудием исследования в проблемах обоснования математики.
Применение метода формализации бывает обычно связано с выделением логич. части рассматриваемой дедуктивной теории. Эта логич. часть, оформляемая, как и вся теория, в виде нек-рого исчисления, т.е. системы формализованных аксиом и формальных правил вывода, может быть рассматриваема как самостоятельное целое. Простейшим из логич. исчислений являются исчисления высказываний, классическое и конструктивное. Формальное различие двух исчислений высказываний отражает глубокое различие в их истолкованиях, касающееся смысла пропозициональных переменных и логич. связок (см. Интуиционизм, Исчисление задач, Логика высказываний).
Наиболее широко используемым при построении дедуктивных математич. теорий является в наст. время классич. предикатов исчисление, представляющее собой развитие и уточнение классич. теории суждений Аристотеля и вместе с тем соответствующее теоретико-множеств. системе абстракций. Конструктивное исчисление предикатов относится к классич. исчислению предикатов так же, как конструктивное исчисление высказываний к классич. исчислению высказываний. Самое существенное из расхождений между этими двумя исчислениями предикатов связано с истолкованием в них частных, или экзистенциальных, суждений. В то время как в конструктивном исчислении предикатов такие суждения истолковываются как утверждения о возможности определ. конструкций и считаются установленными лишь при указании этих конструкций, в классич. исчислении предикатов экзистенциальные суждения обычно трактуются в отрыве от конструктивных возможностей как некие "чистые" утверждения о существовании (см. Конструктивное направление). Более удовлетворительное истолкование экзистен-циальных суждений классич. исчисления предикатов, увязывающее определ. образом это исчисление с конструктивным исчислением предикатов, было открыто А. Н. Колмогоровым в 1925.
В математике логич. исчисления применяются в сочетании со специфич. аксиомами развертываемых дедуктивных теорий. Напр., теорию натуральных чисел можно строить, объединяя аксиомы Пеано для арифметики с исчислением предикатов (классическим или конструктивным). Применяемое при этом объединение логич. символики с математической не только позволяет оформлять математич. теории в виде исчислений, но и может являться ключом к уточнению смысла математич. предложений. В наст. время сов. математиком Н. А. Шаниным разработаны точные правила конструктивного истолкования математич. суждений, охватывающие широкие области математики. Применение этих правил становится возможным лишь после того, как рассматриваемое суждение записано на надлежащем точном логико-математич. языке. В результате применения правил истолкования может выявиться конструктивная задача, связываемая с данным суждением. Это, однако, происходит не всегда: не со всяким математич. предложением обязательно связывается конструктивная задача.
С исчислениями связаны следующие понятия и идеи. Об исчислении говорят, что оно непротиворечиво, если в нем не выводима никакая формула вида U вместе с формулой U (где есть знак отрицания). Задача установления непротиворечивости применяемых в математике исчислений является одной из гл. задач М. л. В наст. время эта задача решена лишь в весьма огранич. объеме. Употребляются разл. понятия п о л н о т ы исчисления. Имея в виду охват той или иной содержательно определенной области математики, считают исчисление полным относительно этой области, если в нем выводима всякая формула, выражающая верное утверждение из этой области. Другое понятие полноты исчисления связано с требованием доставлять либо доказательство, либо опровержение для всякого предложения, формулируемого в исчислении. Первостепенное значение в связи с этими понятиями имеет теорема Гёделя–Россера, утверждающая несовместимость требования полноты с требованиями непротиворечивости для весьма широкого класса исчислений. Согласно теореме Гёделя–Россера, никакое непротиворечивое исчисление из этого класса не может быть полным относительно арифметики: для всякого такого исчисления может быть построено верное арифметич. утверждение, формализуемое, но не выводимое в этом исчислении (см. Метатеория). Эта теорема, не снижая значения М. л. как мощного организующего средства в науке, в корне убивает надежды на эту дисциплину как на нечто способное осуществить всеобщий охват математики в рамках одной дедуктивной теории. Надежды такого рода высказывались мн. учеными, в том числе Гильбертом – главным представителем формализма в математике – направления, пытавшегося свести всю математику к манипуляциям с формулами по определенным раз навсегда установленным правилам. Результат Гёделя и Россера нанес этому направлению сокрушительный удар. В силу их теоремы, даже такая сравнительно элементарная часть математики, как арифметика натуральных чисел, не может быть охвачена одной дедуктивной теорией.
М. л. органически связана с кибернетикой, в частности с теорией релейно-контактных схем и автоматов, машинной математикой и лингвистикой математической. Приложения М. л. к релейно-контактным схемам основаны на том, что всякая двухполюсная релейно- контактная схема в след. смысле м о д е л и р у е т нек-рую формулу U классич. исчисления высказываний. Если схема управляется n реле, то столько же различных пропозициональных переменных содержит U, и, если обозначить через bi, суждение "Реле номер i сработало", то цепь будет тогда и только тогда замкнута, когда будет верен результат подстановки суждений b1, ..., bn вместо соответствующих логич. переменных в U. Построение такой моделируемой формулы, описывающей "условия работы" схемы, оказывается особенно простым для т.н. Π-с х е м, получаемых исходя из элементарных одноконтактных цепей путем параллельных и последовательных соединений. Это связано с тем, что параллельное и последовательное соединения цепей моделируют, соответственно, дизъюнкцию и конъюнкцию суждений. Действительно, цепь, полученная путем параллельного (последовательного) соединения цепей Ц1 и Ц2, тогда и только тогда замкнута, когда замкнута цепь Ц1 или (и) замкнута цепь Ц2. Применение исчисления высказываний к релейно-контактным схемам открыло плодотворный подход к важным проблемам совр. техники. Вместе с тем эта связь теории с практикой привела к постановке и частичному решению мн. новых и трудных проблем М. л., к числу к-рых в первую очередь относится т.н. проблема м и н и м и з а ц и и, состоящая в разыскании эффективных методов нахождения простейшей формулы, равносильной данной формуле.
Релейно-контактные схемы являются частным случаем управляющих схем, применяемых в совр. автоматах. Управляющие схемы иных типов, в частности, схемы из электронных ламп или полупроводниковых элементов, имеющие еще большее практич. значение, также могут быть разрабатываемы с помощью М. л., к-рая доставляет адекватные средства как для анализа, так и для синтеза таких схем. Язык М. л. оказался также применимым в теории программирования, создаваемой в наст. время в связи с развитием машинной математики. Наконец, созданный в М. л. аппарат исчислений оказался применимым в математической лингвистике, изучающей язык математич. методами. Одной из осн. проблем этой науки является точная формулировка правил грамматики рассматриваемого языка, т.е. точное определение того, что следует понимать под "грамматически правильной фразой этого языка". Как показал амер. ученый Хомский, есть все основания искать решение этой задачи в следующем виде: строится нек-рое исчисление, и грамматически правильными фразами объявляются выражения, составленные из знаков алфавита данного языка и выводимые в этом исчислении. Работы в этом направлении продолжаются.
См. также Алгебра логики, Конструктивная логика, Логика комбинаторная, Логика классов, Логическое исчисление, Модальная логика и лит. при этих статьях.
А. Марков. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. . 1960—1970.


.

Игры ⚽ Нужно сделать НИР?
Синонимы:

Полезное


Смотреть что такое "МАТЕМАТИЧЕСКАЯ ЛОГИКА" в других словарях:

  • математическая логика —         ЛОГИКА СИМВОЛИЧЕСКАЯ, математическая логика, теоретическая логика область логики, в которой логические выводы исследуются посредством логических исчислений на основе строгого символического языка. Термин «Л. с.» был, по видимому, впервые… …   Энциклопедия эпистемологии и философии науки

  • МАТЕМАТИЧЕСКАЯ ЛОГИКА — Ее еще называют символической логикой. М. л. это та же самая Аристотелева силлогистическая логика, но только громоздкие словесные выводы заменены в ней математической символикой. Этим достигается, во первых, краткость, во вторых, ясность, в… …   Энциклопедия культурологии

  • МАТЕМАТИЧЕСКАЯ ЛОГИКА — МАТЕМАТИЧЕСКАЯ логика, дедуктивная логика, использующая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений …   Современная энциклопедия

  • МАТЕМАТИЧЕСКАЯ ЛОГИКА — дедуктивная логика, включающая математические методы исследования способов рассуждений (выводов); математическая теория дедуктивных способов рассуждений. Математической логикой называют также логику, которой пользуются в математике …   Большой Энциклопедический словарь

  • МАТЕМАТИЧЕСКАЯ ЛОГИКА — (символическая логика), аналитический раздел логики, результат применения математических методов к проблемам классической логики. Рассматривает понятия, которые могут быть истинными или ложными, связь между понятиями и оперирование ими, включая… …   Научно-технический энциклопедический словарь

  • МАТЕМАТИЧЕСКАЯ ЛОГИКА — один из ведущих разделов современной логики и математики. Сформировался в 19 20 ст. как реализация идеи о возможности записать все исходные допущения на языке знаков, аналогичных математическим и тем самым заменить рассуждения вычислениями.… …   Новейший философский словарь

  • математическая логика — сущ., кол во синонимов: 1 • логистика (9) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • математическая логика — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN mathematical logic …   Справочник технического переводчика

  • Математическая логика — (теоретическая логика, символическая логика)  раздел математики, изучающий доказательства и вопросы оснований математики. «Предмет современной математической логики разнообразен.»[1] Согласно определению П. С. Порецкого, «математическая… …   Википедия

  • МАТЕМАТИЧЕСКАЯ ЛОГИКА — теоретическая логика, символическая логика, раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики. Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»