Микроскопические методы исследования

Микроскопические методы исследования
способы изучения различных объектов с помощью микроскопа. В биологии и медицине эти методы позволяют изучать строение микроскопических объектов, размеры которых лежат за пределами разрешающей способности глаза человека. Основу М.м.и. составляет световая и электронная микроскопия. В практической и научной деятельности врачи различных специальностей — вирусологи, микробиологи, цитологи, морфологи, гематологи и др. помимо обычной световой микроскопии используют фазово-контрастную, интерференционную, люминесцентную, поляризационную, стереоскопическую, ультрафиолетовую, инфракрасную микроскопию. В основе этих методов лежат различные свойства света. При электронной микроскопии изображение объектов исследования возникает за счет направленного потока электронов.
Для световой микроскопии и основанных на ней других М.м.и. определяющее значение помимо разрешающей способности Микроскопа имеет характер и направленность светового луча, а также особенности изучаемого объекта, который может быть прозрачным и непрозрачным. В зависимости от свойств объекта изменяются физические свойства света — его цвет и яркость, связанные с длиной и амплитудой волны, фаза, плоскость и направление распространения волны. На использовании этих свойств света и строятся различные М.м.и. Для световой микроскопии биологические объекты обычно окрашивают с целью выявления тех или иных их свойств (рис. 1). При этом ткани должны быть фиксированы, т.к. окраска выявляет определенные структуры только убитых клеток. В живой клетке краситель обособляется в цитоплазме в виде вакуоли и не прокрашивает ее структуры. Однако в световом микроскопе можно изучать и живые биологические объекты с помощью метода витальной микроскопии. В этом случае применяют темнопольный конденсор, который встраивают в микроскоп.
Для исследования живых и неокрашенных биологических объектов используют также фазово-контрастную микроскопию. Она основана на дифракции луча света в зависимости от особенностей объекта излучения. При этом изменяется длина и фаза световой волны. Объектив специального фазово-контрастного микроскопа содержит полупрозрачную фазовую пластинку. Живые микроскопические объекты или фиксированные, но не окрашенные микроорганизмы и клетки из-за их прозрачности практически не изменяют амплитуду и цвет проходящего через них светового луча. вызывая лишь сдвиг фазы его волны. Однако, пройдя через изучаемый объект, лучи света отклоняются от полупрозрачной фазовой пластинки. В результате между лучами, прошедшими через объект, и лучами светового фона возникает разность длины волны. Если эта разность составляет не менее 1/4 длины волны, то появляется зрительный эффект, при котором темный объект отчетливо виден на светлом фоне или наоборот в зависимости от особенностей фазовой пластинки.
Разновидностью фазово-контрастной микроскопии является амплитудно-контрастная, или аноптральная, микроскопия, при которой применяют объектив со специальными пластинками, изменяющими только яркость и цвет фонового света. В результате расширяются возможности исследования живых неокрашенных объектов. Фазово-контрастная микроскопия находит применение в микробиологии и паразитологии при исследовании микроорганизмов, простейших, клеток растений и животных; в гематологии для подсчета и определения дифференцировки клеток костного мозга и крови; а также при изучении клеток культуры тканей и т.п.
Интерференционная микроскопия решает те же задачи, что и фазово-контрастная. Но если последняя позволяет наблюдать лишь контуры объектов исследования, то с помощью интерференционной микроскопии можно изучать детали прозрачного объекта и проводить их количественный анализ. Это достигается благодаря раздвоению луча света в микроскопе: один из лучей проходит через частицу наблюдаемого объекта, а другой мимо нее. В окуляре микроскопа оба луча соединяются и интерферируют между собой. Возникающую разность фаз можно измерить, определив т. о. массу различных клеточных структур. Последовательное измерение разности фаз света с известными показателями преломления дает возможность определять толщину живых объектов и нефиксированных тканей, концентрацию в них воды и сухого вещества, содержание белков и т.д. На основании данных интерференционной микроскопии можно косвенно судить о проницаемости мембран, активности ферментов, клеточном метаболизме объектов исследования.
Поляризационная микроскопия позволяет изучать объекты исследования в свете, образованном двумя лучами, поляризованными во взаимноперпендикулярных плоскостях, т.е. в поляризованном свете. Для этого используют пленчатые поляроиды или призмы Николя, которые помещают в микроскопе между источником света и препаратом. Поляризация меняется при прохождении (или отражении) лучей света через различные структурные компоненты клеток и тканей, свойства которых неоднородны. В так называемых изотропных структурах скорость распространения поляризованного света не зависит от плоскости поляризации, в анизотропных структурах скорость его распространения меняется в зависимости от направления света по продольной или поперечной оси объекта. Если показатель преломления света вдоль структуры больше, чем в поперечном направлении, возникает положительное двойное лучепреломление, при обратных взаимоотношениях — отрицательное двойное лучепреломление. Многие биологические объекты имеют строгую молекулярную ориентацию, являются анизотропными и обладают положительным двойным преломлением света. Такими свойствами обладают миофибриллы, реснички мерцательного эпителия, нейрофибриллы, коллагеновые волокна и др. Сопоставление характера преломления лучей поляризованного света и величины анизотропии объекта позволяет судить о молекулярной организации его структуры (рис. 2). Поляризационная микроскопия является одним из гистологических методов исследования (Гистологические методы исследования), способом микробиологической диагностики (Микробиологическая диагностика), находит применение в цитологических исследованиях (Цитологическое исследование) и др. При этом в поляризованном свете можно исследовать как окрашенные, так и неокрашенные и нефиксированные, так называемые нативные препараты срезов тканей.
Широкое распространение имеет люминесцентная микроскопия. Она основана на свойстве некоторых веществ давать свечение — люминесценцию в УФ-лучах или в сине-фиолетовой части спектра. Многие биологические вещества, такие как простые белки, коферменты, некоторые витамины и лекарственные средства, обладают собственной (первичной) люминесценцией. Другие вещества начинают светиться только при добавлении к ним специальных красителей — флюорохромов (вторичная люминесценция). Флюорохромы могут распределяться в клетке диффузно либо избирательно окрашивают отдельные клеточные структуры или определенные химические соединения биологического объекта. На этом основано использование люминесцентной микроскопии при цитологических и гистохимических исследованиях (см. Гистохимические методы исследования). С помощью иммунофлюоресценции в люминесцентном микроскопе выявляют вирусные антигены и их концентрацию в клетках, идентифицируют вирусы, определяют антигены и антитела, гормоны, различные продукты метаболизма и т.д. (рис. 3). В связи с этим люминесцентную микроскопию применяют в лабораторной диагностике таких инфекций, как герпес, эпидемический паротит, вирусный гепатит, грипп и др., используют в экспресс-диагностике респираторных вирусных инфекций, исследуя отпечатки со слизистой оболочки носа больных, и при дифференциальной диагностике различных инфекций. В патоморфологии с помощью люминесцентной микроскопии распознают злокачественные опухоли в гистологических и цитологических препаратах, определяют участки ишемии мышцы сердца при ранних сроках инфаркта миокарда, выявляют амилоид в биоптатах тканей и т.д.
Ультрафиолетовая микроскопия основана на способности некоторых веществ, входящих в состав живых клеток, микроорганизмов или фиксированных, но не окрашенных, прозрачных в видимом свете тканей, поглощать УФ-излучение с определенной длиной волн (400—250 нм). Этим свойством обладают высокомолекулярные соединения, такие как нуклеиновые кислоты, белки, ароматические кислоты (тирозин, триптофан, метилалании), пуриновые и пирамидиновые основания и др. С помощью ультрафиолетовой микроскопии уточняют локализацию и количество указанных веществ, а в случае исследования живых объектов — их изменения в процессе жизнедеятельности.
Инфракрасная микроскопия позволяет исследовать непрозрачные для видимого света и УФ-излучения объекты путем поглощения их структурами света с длиной волны 750—1200 нм. Для инфракрасной микроскопии не требуется предварительной химической обработки препаратов. Этот вид М.м.и. наиболее часто используют в зоологии, антропологии, других отраслях биологии. В медицине инфракрасную микроскопию применяют в основном в нейроморфологии и офтальмологии.
Для исследования объемных объектов используют стереоскопическую микроскопию. Конструкция стереоскопических микроскопов позволяет видеть объект исследования правым и левым глазом под разными углами. Исследуют непрозрачные объекты при относительно небольшом увеличении (до 120 раз). Стереоскопическая микроскопия находит применение в микрохирургии (Микрохирургия), в патоморфологии при специальном изучении биопсийного, операционного и секционного материала, в судебно-медицинских лабораторных исследованиях.
Для изучения на субклеточном и макромолекулярном уровнях структуры клеток, тканей микроорганизмов и вирусов используют электронную микроскопию. Этот М.м.и. позволил перейти на качественно новый уровень изучения материи. Он нашел широкое применение в морфологии, микробиологии, вирусологии, биохимии, онкологии, генетике, иммунологии, Резкое повышение разрешающей способности электронного микроскопа обеспечивается потоком электронов, проходящих в вакууме через электромагнитные поля, создаваемые электромагнитными линзами. Электроны могут проходить через структуры исследуемого объекта (трансмиссионная электронная микроскопия) или отражаться от них (сканирующая электронная микроскопия), отклоняясь под разными углами, в результате чего возникает изображение на люминесцентном экране микроскопа. При трансмиссионной (просвечивающей) электронной микроскопии получают плоскостное изображение структур (рис. 4), при сканирующей — объемное (рис. 5). Сочетание электронной микроскопии с другими методами, например с радиоавтографией, гистохимическими, иммунологическими методами исследования (Иммунологические методы исследования), позволяет проводить электронно-радиоавтографические, электронно-гистохимические, электронно-иммунологические исследования.
Электронная микроскопия требует специальной подготовки объектов исследования, в частности химической или физической фиксации тканей и микроорганизмов. Биопсийный материал и секционный материал после фиксации обезвоживают, заливают в эпоксидные смолы, режут стеклянными или алмазными ножами на специальных ультратомах, позволяющих получать ультратонкие срезы тканей толщиной 30—50 нм. Их контрастируют и затем изучают в электронном микроскопе. В сканирующем (растровом) электронном микроскопе изучают поверхность различных объектов, напыляя на них в вакуумной камере электронно-плотные вещества, и исследуют так называемые реплики, повторяющие контуры образца. См. также Микроскоп.
Рис. 2б). Микропрепарат миокарда в поляризованном свете при внезапной смерти от острой коронарной недостаточности — выявляются участки, в которых отсутствует характерная поперечная исчерченность кардиомиоцитов; ×400
Рис. 2б). Микропрепарат миокарда в поляризованном свете при внезапной смерти от острой коронарной недостаточности — выявляются участки, в которых отсутствует характерная поперечная исчерченность кардиомиоцитов; ×400.
Рис. 2а). Микропрепарат миокарда в поляризованном свете в норме
Рис. 2а). Микропрепарат миокарда в поляризованном свете в норме.
Рис. 3. Микропрепарат перитонеального макрофага в клеточной культуре, люминесцентная микроскопия
Рис. 3. Микропрепарат перитонеального макрофага в клеточной культуре, люминесцентная микроскопия.
Рис. 4. Электронограмма кардиомиоцита, полученная при трансмиссионной (просвечивающей) электронной микроскопии: отчетливо видны субклеточные структуры; ×22000
Рис. 4. Электронограмма кардиомиоцита, полученная при трансмиссионной (просвечивающей) электронной микроскопии: отчетливо видны субклеточные структуры; ×22000.
Рис. 1. Микропрепарат миокарда при внезапной смерти от острой коронарной недостаточности: окраска по Ли позволяет выявить контрактурные пересокращения миофибрилл (участки красного цвета); ×250
Рис. 1. Микропрепарат миокарда при внезапной смерти от острой коронарной недостаточности: окраска по Ли позволяет выявить контрактурные пересокращения миофибрилл (участки красного цвета); ×250.
Рис. 5. Электронограмма лейкоцита и фагоцитируемой <a href=им бактерии, полученная при сканирующей электронной микроскопии; ×20000">
Рис. 5. Электронограмма лейкоцита и фагоцитируемой им бактерии, полученная при сканирующей электронной микроскопии; ×20000.

1. Малая медицинская энциклопедия. — М.: Медицинская энциклопедия. 1991—96 гг. 2. Первая медицинская помощь. — М.: Большая Российская Энциклопедия. 1994 г. 3. Энциклопедический словарь медицинских терминов. — М.: Советская энциклопедия. — 1982—1984 гг.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Микроскопические методы исследования" в других словарях:

  • Микроскопические методы исследования —    исследование объектов экспертизы с помощью микроскопа. В экспертной практике применяются исследования в проходящем свете, в падающем свете (по методам светлого и темного полей), в поляризованном свете, по методу фазового контраста,… …   Криминалистическая энциклопедия

  • МЕТОДЫ ВРАЧЕБНОГО ИССЛЕДОВАНИЯ — І. Общие принципы врачебного исследования. Рост и углубление наших знаний, все большее, и большее техническое оснащение клиники, основанное на использовании новейших достижений физики, химии и техники, связанное с этим усложнение методов… …   Большая медицинская энциклопедия

  • АРХЕОЛОГИЯ. МЕТОДЫ И ПРИЕМЫ ИССЛЕДОВАНИЯ — Археологи по существу подобны детективам, занятым воссозданием и постижением жизни людей прошлых эпох; поэтому неудивительно, что для извлечения информации из материальных следов, оставленных древними людьми, они используют самые разнообразные… …   Энциклопедия Кольера

  • Обследование больного — I Обследование больного Обследование больного комплекс исследований, направленных на выявление индивидуальных особенностей больного, установление диагноза болезни, обоснование рационального лечения, определение прогноза. Объем исследований при О …   Медицинская энциклопедия

  • Кость — I Кость (os) орган опорно двигательного аппарата, построенный преимущественно из костной ткани. Совокупность К., связанных (прерывно или непрерывно) соединительной тканью, хрящом или костной тканью, образует Скелет. Общее количество К. скелета… …   Медицинская энциклопедия

  • Микробиологи́ческая диагно́стика — основана на идентификации возбудителя или выявлении иммунного ответа организма больного на него. Начальным этапом М.д. является отбор материала и транспортировка проб в лабораторию. Вид материала для исследования определяется особенностями… …   Медицинская энциклопедия

  • Простейшие — I Простейшие (Protozoa) тип животных, представленный одноклеточными организмами. Общепринятой является классификация, согласно которой тип П. делится на 4 класса: саркодовые, жгутиковые, споровики, инфузории. Тип П. объединяет около 30 тыс. видов …   Медицинская энциклопедия

  • Микроскоп — I Микроскоп прибор для получения увеличенного изображения объектов или деталей их структуры, не видимых невооруженным глазом. Глаз способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм; с помощью светового М. можно… …   Медицинская энциклопедия

  • Мокрота — I Мокрота (sputum) выделяемый при отхаркивании патологически измененный трахеобронхиальный секрет с примесью слюны и секрета слизистой оболочки носа и придаточных (околоносовых) пазух. В норме трахеобронхиальный секрет состоит из слизи,… …   Медицинская энциклопедия

  • Патологи́ческая анато́мия — медико биологическая наука, изучающая структурные основы патологических процессов в организме человека и животных и морфологические аспекты патогенеза: важнейшая составная часть патологии (Патология). Различают общую П. а., изучающую типовые… …   Медицинская энциклопедия

  • Микробиология — I Микробиология (греч. mikros малый + Биология наука о микроорганизмах, изучающая их систематику, строение, физиологию, биохимию, генетику и изменчивость, распространение и роль в природе, в жизни человека, а также разрабатывающая способы… …   Медицинская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»