ВСЮДУ ПЛОТНОЕ МНОЖЕСТВО это:

ВСЮДУ ПЛОТНОЕ МНОЖЕСТВО

Атопологического пространства X - множество, определяемое свойством: , где - замыкание множества А. Другими словами, в любом открытом в Xмножестве имеется хотя бы одна точка из множества А. Употребляется также термин "плотное множество". А. А. Мальцев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ВСЮДУ ПЛОТНОЕ МНОЖЕСТВО" в других словарях:

  • Всюду плотное множество — Плотное множество подмножество, точками которого можно приблизить любую точку объемлющего пространства. Содержание 1 Определения 2 Замечание 3 Примеры 4 См. также …   Википедия

  • ПЛОТНОЕ МНОЖЕСТВО — то же, что всюду плотное множество. Более общо, множество Аназ. плотным в открытом множестве Gпространства X, если G содержится в замыкании Аили, что то же самое, если всюду плотно в подпространстве . Если Ане плотно ни в каком непустом открытом… …   Математическая энциклопедия

  • Плотное множество — подмножество пространства, точками которого можно сколь угодно хорошо приблизить любую точку объемлющего пространства. Формально говоря, A плотно в X, если всякая окрестность любой точки x из X содержит элемент A. Содержание 1 Определения 2… …   Википедия

  • Нигде не плотное множество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Множество второй категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Множество первой категории — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Массивное множество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Несвязное множество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • Связное множество — Курсив обозначает ссылку на этот словарь # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш …   Википедия

  • ВПОЛНЕ НЕПРИВОДИМОЕ МНОЖЕСТВО — множество Млинейных операторов в локально выпуклом топологическом векторном пространстве Е, всюду плотное в алгебре S(E).всех слабо непрерывных линейных операторов в Е;при этом S(E).рассматривается в слабой операторной топологии. Понятие В. н. м …   Математическая энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»