ВЕДДЕРБЕРНА - МАЛЬЦЕВА ТЕОРЕМА это:

ВЕДДЕРБЕРНА - МАЛЬЦЕВА ТЕОРЕМА

пусть А - конечномерная ассоциативная алгебра над полем Fс радикалом N и пусть факторалгебра A/N - сепарабельная алгебра (для алгебр над полем характеристики 0 это всегда выполнено); тогда алгебра Аразлагается (как линейное пространство) в прямую сумму радикала N и нек-рой полупростой подалгебры S


причем, если имеется другое разложение , где - полупростая подалгебра, то существует автоморфизм алгебры , отображающий на (автоморфизм является внутренним, т. е. существуют элементы такие, что и для всех , где ). Существование указанного разложения получено Дж. Веддерберном [1], а единственность (с точностью до автоморфизма) полупростого слагаемого доказана А. И. Мальцевым [2]. Эта теорема вместе с теоремой Веддерберна (см. Ассоциативные кольца и алгебры )о строении полупростых алгебр составляет центральную часть классич. теории конечномерных алгебр.

Лит.:[1] Weddеrburn J. Н. М., "Ргос. London Math. Soc.", ser. 2, 1908, v. 6, p. 77-118; [2] Мальцев А. И., "Докл. АН СССР", 1042, т. 36, № 1, с. 42-5; [3] Albert A. A., Structure of algebras, N. Y., 1939; [4] Кэртис Ч., Райнер И., Теория представлений конечных групп и ассоциативных алгебр, пер. с англ., М., 1969. Л. А. Бокуть.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ВЕДДЕРБЕРНА - МАЛЬЦЕВА ТЕОРЕМА" в других словарях:

  • ВЕДДЕРБЕРНА - АРТИНА ТЕОРЕМА — теорема, полностью описывающая строение ассоциативных артиновых колец без нильпотентных идеалов; ассоциативное кольцо Rудовлетворяет условию минимальности для правых идеалов и не имеет нильпотентных идеалов в том и только том случае, если Rесть… …   Математическая энциклопедия

  • Теорема Веддерберна — …   Википедия

  • КЛАССИЧЕСКИ ПОЛУПРОСТОЕ КОЛЬЦО — ассоциативное артиново справа (или, что равносильно, артиново слева) кольцо с нулевым Джекобсона радикалом. Строение К. п. к. описывает Веддерберна Артина теорема. Класс К. п. к. может быть охарактеризован и гомологическими свойствами (см.… …   Математическая энциклопедия

  • ГОМОЛОГИЧЕСКАЯ РАЗМЕРНОСТЬ — числовая характеристика объекта категории относительно некоторого выделенного класса объектов этой категории. Основная область применения этого понятия категории модулей над кольцом. Пусть фиксированный класс объектов абелевой категории и объект… …   Математическая энциклопедия

  • ПОЛУГРУППА — множество с одной бинарной операцией, удовлетворяющей закону ассоциативности. Понятие П. есть обобщение понятия группы:из аксиом группы остается лишь одна ассоциативность; этим объясняется и термин П. . П. называют иногда моноидами, но последний… …   Математическая энциклопедия

  • МАТРИЦ АЛГЕБРА — матричная алгебра, подалгебра полной матричной алгебры Fn всех матриц над полем F. Операции в Fn определяются следующим образом: для Алгебра Fn изоморфна алгебре всех эндоморфизмов n мерного линейного пространства над F. Размерность Fn над Fравна …   Математическая энциклопедия

  • МАТРИЦ КОЛЬЦО — полное кольцо матриц, кольцо всех квадратных матриц фиксированного порядка над кольцом R. Кольцо матриц над R обозначается Rn или Mn(R). Всюду ниже R ассоциативное кольцо с единицей 1. Кольцо Rn изоморфно кольцу End Mвсех эндоморфизмов свободного …   Математическая энциклопедия

  • Тело (алгебра) — У этого термина существуют и другие значения, см. Тело. Тело множество с двумя операциями (сложение и умножение), обладающее следующими свойствами: Абелева группа относительно сложения. Все ненулевые элементы образуют группу относительно… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»