ВЕДДЕРБЕРНА - АРТИНА ТЕОРЕМА это:

ВЕДДЕРБЕРНА - АРТИНА ТЕОРЕМА

теорема, полностью описывающая строение ассоциативных артиновых колец без нильпотентных идеалов; ассоциативное кольцо Rудовлетворяет условию минимальности для правых идеалов и не имеет нильпотентных идеалов в том и только том случае, если Rесть прямая сумма конечного числа идеалов, каждый из к-рых изоморфен полному кольцу матриц конечного порядка над подходящим телом, причем это разложение в прямую сумму единственно с точностью до порядка следования слагаемых. Эта теорема получена первоначально Дж. Вед-дерберном (J. Wedderburn) и доказана в окончательной формулировке Э. Артином [1].

Лит.:[1] Аrtin E., "Bull. Amer. Math. Soc.", 1950, V.56, № 1, p. 65-72. к. А. Жевлаков.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ВЕДДЕРБЕРНА - АРТИНА ТЕОРЕМА" в других словарях:

  • ВЕДДЕРБЕРНА - МАЛЬЦЕВА ТЕОРЕМА — пусть А конечномерная ассоциативная алгебра над полем Fс радикалом N и пусть факторалгебра A/N сепарабельная алгебра (для алгебр над полем характеристики 0 это всегда выполнено); тогда алгебра Аразлагается (как линейное пространство) в прямую… …   Математическая энциклопедия

  • Теорема Веддерберна — …   Википедия

  • ПОЛУГРУППА — множество с одной бинарной операцией, удовлетворяющей закону ассоциативности. Понятие П. есть обобщение понятия группы:из аксиом группы остается лишь одна ассоциативность; этим объясняется и термин П. . П. называют иногда моноидами, но последний… …   Математическая энциклопедия

  • МАТРИЦ АЛГЕБРА — матричная алгебра, подалгебра полной матричной алгебры Fn всех матриц над полем F. Операции в Fn определяются следующим образом: для Алгебра Fn изоморфна алгебре всех эндоморфизмов n мерного линейного пространства над F. Размерность Fn над Fравна …   Математическая энциклопедия

  • Тело (алгебра) — У этого термина существуют и другие значения, см. Тело. Тело множество с двумя операциями (сложение и умножение), обладающее следующими свойствами: Абелева группа относительно сложения. Все ненулевые элементы образуют группу относительно… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»