БОРЕЛЯ УСИЛЕННЫЙ ЗАКОН БОЛЬШИХ ЧИСЕЛ это:

БОРЕЛЯ УСИЛЕННЫЙ ЗАКОН БОЛЬШИХ ЧИСЕЛ

- исторически первый вариант больших чисел усиленного закона, сформулированный И доказанный Э. Борелем [1] применительно к схеме Бернулли (см. Бернулли испытания). Пусть независимые случайные величины одинаково распределены и принимают два значения 0 и 1 с вероятностью 1/2 каждое, тогда есть число успехов в схеме Бернулли с вероятностью успеха 1/2. Э. Борель [1] доказал, что с вероятностью 1 ,


при . Впоследствии (1914) Г. Харди и Дж. Литл-вуд (G. Hardy, J. Littlewood) показали, что почти наверное


а затем А. Я. Хинчин (1922) доказал более сильный результат:


См. также Повторного логарифма закон.

Лит.:[1] Bоrеl Е., "Rend. Circolo mat. Palermo", 1909, v. 27, p. 247-71; [2] Кац М., Статистическая независимость в теории вероятностей, анализе и теории чисел, пер. с англ., М., 1963. А. В. Прохоров.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "БОРЕЛЯ УСИЛЕННЫЙ ЗАКОН БОЛЬШИХ ЧИСЕЛ" в других словарях:

  • БОЛЬШИХ ЧИСЕЛ УСИЛЕННЫЙ ЗАКОН — одна из форм больших чисел закона (вего общем понимании), утверждающая, что при определенных условиях с вероятностью единица происходит неограниченное сближение средних арифметических последовательности случайных величин с нек рыми постоянными… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»