БОННЕЗЕНА НЕРАВЕНСТВО это:

БОННЕЗЕНА НЕРАВЕНСТВО

одно яз уточнений изопериметрического неравенства для выпуклых областей на плоскости. Пусть K - выпуклая область на плоскости, r - радиус наибольшего круга, к-рый можно поместить в К, R - радиус наименьшего круга, содержащего K, L- периметр, a F - площадь области К. Тогда справедливо неравенство Боннезена [1 ]:


Равенство достигается только при , т. е. в том случае, когда K есть круг. Обобщения Б. н. см. [2]. Лит.:[1] Воnnesen Т., "Math. Ann.", 1921, Bd 84, S. 218; [2] Дискант В. И., "Докл. АН СССР", 1973, т. 213, № 3, с. 519-21. А. <Б. Иванов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "БОННЕЗЕНА НЕРАВЕНСТВО" в других словарях:

  • ИЗОПЕРИМЕТРИЧЕСКОЕ НЕРАВЕНСТВО КЛАССИЧЕСКОЕ — неравенство между объемом Vобласти в евклидовом пространстве Rn, и (n 1) мерной площадью F, ограничивающей область гиперповерхности: где vn объем единичного re мерного шара. Равенство в И. н. к. имеет место только для шара. И. н. к. дает решение… …   Математическая энциклопедия

  • ОВАЛ — замкнутая выпуклая гладкая линия в . Точки О., в к рых кривизна достигает экстремума, наз. вершинами О. Число вершин О. не менее четырех. Пусть Е О ., пробегаемый против часовой стрелки, в плоскости с декартовыми прямоугольными координатами х, y; …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»