БИФУРКАЦИЯ это:

БИФУРКАЦИЯ

- термин, употребляемый в нек-рых разделах математики применительно к ситуации, когда нек-рый объект зависит от параметра (не обязательно скалярного) и в любой окрестности нек-рого значения последнего (бифуркационное значение, или точка Б.) исследуемые качественные свойства объекта не являются одинаковыми для всех . Соответствующие точные определения различны в различных случаях, но в общем они следуют (с теми или иными модификациями) двум вариантам:

а) Изучаемые качественные свойства объекта состоят в существовании других объектов О, определенным образом связанных с ним. Б. состоит в том, что при изменении объекты Овозникают или исчезают (в частности, они могут сливаться друг с другом, или из одного объекта может "рождаться" несколько). См. ниже - п. 1).

б) Сначала для объектов определяется, когда два таких объекта считаются эквивалентными. (Определение должно быть таким, чтобы у эквивалентных объектов все интересующие нас качественные свойства были одинаковыми.) Изменение качественных свойств в окрестности точки Б. , по определению, понимается в том смысле, что там имеются значения с неэквивалентными . См. ниже - п. 2).

1) В теории операторов исходный объект - это нелинейный оператор в действительном банаховом пространстве, с действительным параметром , определенный в окрестности точки и такой, что . Ему при каждом фиксированном сопоставляются другие объекты О - решения хнелинейного операторного уравнения . Точка В.- это точка, в к-рои происходит рождение нового, нетривиального решения этого уравнения. Именно, это такая точка , что для любого существует при к-ром уравнение имеет решение , удовлетворяющее условиям Если , где A - линейный вполне непрерывный оператор, то понятие точки Б. совпадает с понятием характери-стич. значения оператора А.

Если - нелинейный вполне непрерывней оператор, непрерывно дифференцируемый в смысле Фреше и такой, что , то точками Б. оператора Ф могут служить лишь характеристич. значения оператора А. Топологич. методом (см. [1], [2]) установлено, что каждое нечетнократное (в частности, простое) характеристич. значение оператора Аявляется точкой Б. оператора Ф. Аналогичное достаточное условие для случая четнократных характеристических значений формулируется с помощью понятия вращения векторного поля.

Если - неизолированное решение уравнения есть точка Б. оператора Ф. Вариационным методом доказано (см. [1], [2]), что если - нелинейный вполне непрерывный оператор в гильбертовом пространстве, являющийся градиентом слабо непрерывного функционала, а - вполне непрерывный самосопряженный оператор, то каждое характеристич. значение оператора Аявляется точкой Б. оператора Ф. Понятие точки Б. видоизменяется также на случай больших решений при Важное значение этих понятий и результатов состоит в том, что при сравнительно слабых ограничениях удается установить ветвление решения в частности доказать неединственность решения нелинейной задачи. В ряде случаев более точную информацию дают аналитич. методы теории ветвления решений нелинейных уравнений (см. [5]).

2) В теории гладких динамич. систем рассматриваются однопараметрические (и отчасти двупараметрические [6]) семейства потоков (и каскадов; здесь рассматриваются лишь первые), причем выясняется, когда Б. "типичная", т. е. сохраняет свой характер при малом изменении рассматриваемого семейства [9]; употребительны оба варианта а) и б). При втором два потока считаются эквивалентными, если существует гомеоморфизм фазового пространства, переводящий траектории одного из них в траектории другого с сохранением направления движения. Имеется вполне удовлетворительная теория Б. однопараметрич. семейств потоков с двумерным фазовым многообразием [7], [9], а также локальный вариант, относящийся к окрестности положения равновесия или периодич. решения в гс-мерном случае [6].

В варианте а) изучаемые объекты О, к-рые сопоставляются данной дннамич. системе,- это положения равновесия и периодич. решения, а иногда также нек-рые инвариантные многообразия (преимущественно торы) и гиперболич. инвариантные множества. Рассматривается "рождение" этих объектов, происходящее как "локально", возле нек-рого положения равновесия или периодич. решения, так и "полулокально", в окрестности "замкнутого контура", образованного несколькими траекториями, к-рые при стремятся к положению равновесия или к периодич. решениям. Возможен случай В., к-рая в определенном Смысле связана с подобным контуром, но к-рая происходит (с изменением параметра ) еще до его возникновения [8]. Часто рождение периодич. решений бывает удобно рассматривать, переписывая дифференциальное уравнение и условие периодичности в виде интегрального уравнения и применяя к нему соответствующие методы [5].

3) В теории особенностей отображений встречаются разнообразные Б. различных объектов (как исходных, так и сопоставленных им), в связи с чем имеются различные случаи использования этого термина (вернее, производных от него) (см. [10], [6], [11]), но еще чаще соответствующие понятия получают самостоятельные названия. Таковы, напр., версальные семейства (или деформации) (см. [6], [И], [12]), к-рые (в нек-ром смысле) описывают все возможные Б., могущие произойти при малой деформации рассматриваемого объекта, в частности сюда относятся семь элементарных катастроф [12], к-рые представляют собой "типичные" k-параметрические () семейства функций, включающие функцию с вырожденной критической точкой и определенные в окрестности последней; тем самым они описывают соответствующую Б. (Вообще, в иностранной литературе по теории особенностей вместо Б. часто говорят о "катастрофах".)

Лит.:[1] Красносельский М. А., Топологические методы в теории нелинейных интегральных уравнений, М., 1956; [2] Функциональный анализ, М., 1964; [3] Красносельский М. А., Положительные решения операторных уравнений, М., 1962; [4] Вайнберг М. М., Вариационные методы исследования нелинейных операторов, М., 1956; [5] Вайнберг М. М., Треногий В. А., Теория ветвления решений нелинейных уравнений, М., 1969; [6] Арнольд В. И., "Успехи матем. наук*", 1972, т. 27, в. 5, 119-84; [7] Андронов А. А., Леонтович Е. А., Гордон И. И., Майер А. Г., Теория бифуркаций динамических систем на плоскости, М., 1967; [8] Гаврилов Н. К., Шильников Л. П., "Матем. сб.", 1972, т. 88, №4, 475-92; 1973, т. 90, №1,139-56; [9] Реiхоtо М. М., в кн.: Proceedings of the International Congress of Mathematics, Vancouver, 1974, v. 2, p. 315-19; [10] Том P.. "Успехи матам, наук". 1972., т,. 27. в 5, 51-7; [11] Арнольд В. И., "Успехи матем. наук", 1975, т. 30, в. 5, 3-65; [12] Brocker P., Lander L., Differentiable germs and catastrophes, Cambrige, 1975.

Д. В. Аносов, В. А. Треногий.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Синонимы:

Смотреть что такое "БИФУРКАЦИЯ" в других словарях:

  • БИФУРКАЦИЯ — (лат. bifurcatio, от bis дважды, и firca вила). 1) раздвоение. Деление надвое. 2) разделение учебных занятий и самих учащихся на два различных курса. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИФУРКАЦИЯ [<… …   Словарь иностранных слов русского языка

  • бифуркация — и, ж. bifurcation f., лат. bifurcatio. 1. Раздвоение. Мак. 1908. Раздвоение реки, горного хребта, кровеносного сосуда и пр. Павленков 1911. Естествознание, ели оно не ограничивается бессмысленным набором фактов .. как это было у нас при… …   Исторический словарь галлицизмов русского языка

  • бифуркация — раздвоение, (разветвление, разделение) на две части Словарь русских синонимов. бифуркация сущ., кол во синонимов: 3 • разветвление (14) • …   Словарь синонимов

  • БИФУРКАЦИЯ — (от лат. bifurcus раздвоенный) в биологии раздвоение, вилообразное разделение, напр. трахеи на 2 главных бронха …   Большой Энциклопедический словарь

  • БИФУРКАЦИЯ — в педагогике см. в ст. Фуркация …   Большой Энциклопедический словарь

  • БИФУРКАЦИЯ — приобретение нового качества в движениях динамической системы при малом изменении ее параметров. Основы теории бифуркации заложены А. Пуанкаре и А. М. Ляпуновым в нач. 20 в., затем эта теория была развита А. А. Андроновым и учениками. Знание… …   Большой Энциклопедический словарь

  • БИФУРКАЦИЯ — БИФУРКАЦИЯ, бифуркации, жен. (от лат. bis дважды и furca вилы). Разделение, разветвление чего нибудь в двух направлениях (научн. книжн.). || разделение кровеносного сосуда или нерва (анат.). || Разветвление, разделение на специальные уклоны в… …   Толковый словарь Ушакова

  • БИФУРКАЦИЯ — (новолат. bifurcatio раздвоение, разветвление, от лат. bis дважды, furca вилы), вилообразное раздвоение органа, напр. трахеи на два бронха, аорты на две общие подвздошные артерии, нервного или мышечного волокна. .(Источник: «Биологический… …   Биологический энциклопедический словарь

  • БИФУРКАЦИЯ — [bifurcatio раздвоение, разделение на две ветви] разветвление на две части. В биологии син. термина дихотомия. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 …   Геологическая энциклопедия

  • БИФУРКАЦИЯ — (от лат. bifurcus раздвоенный) англ. bifurcation; нем. Bifurkation. Тип родственных отношений, связывающих семью супругов и их родителей, при к ром родственники по женской линии называются иначе, чем родственники по мужской линии. см. ФУРКАЦИЯ.… …   Энциклопедия социологии

  • Бифуркация — приобретение нового качества в движениях динамической системы при малом изменении ее параметров. Основы теории бифуркации заложены А. Пуанкаре и А. М. Ляпуновым в нач. 20 в., затем эта теория была развита А. А. Андроновым и учениками. Знание… …   Политология. Словарь.

Книги

  • Бифуркация, Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Бифурка?ция — термин происходит от лат. bifurcus —… Подробнее  Купить за 998 руб
  • Самоописания, Луман Никлас. "Общество общества"Никласа Лумана - всеобъемлющее социологическое исследование общества как системы. Выработанная этим классиком современной социологии теория всесторонне и… Подробнее  Купить за 546 руб
  • Самоописания, Никлас Луман. ОБЩЕСТВО ОБЩЕСТВА Никласа Лумана - всеобъемлющее социологическое исследование общества как системы. Выработанная этим классиком современной социологии теория всесторонне и обоснованно… Подробнее  Купить за 447 руб
Другие книги по запросу «БИФУРКАЦИЯ» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»