БИКАТЕГОРИЯ это:

БИКАТЕГОРИЯ

- категория , в к-рой выделены подкатегория эпиморфизмов и подкатегория мономорфизмов таким образом, что выполняются следующие условия:

1) всякий морфизм из категории разлагается в произведение , где

2) если где _ то существует такой изоморфизм , что , и

3) совпадает с классом изоморфизмов категории .

Эпиморфизмы из (мономорфизмы из ) наз. допустимыми эпиморфизмами (мономорфизмам и) бикатегории.

Понятие Б. аксиоматизирует возможность разложения произвольного отображения в произведение сюръективного и инъективного отображений. Категория множеств, категория множеств с отмеченной точкой, категория групп являются бикатегориями с единственной бикатегорной структурой. В категории всех топо-логич. пространств, а также в категории всех ассоциативных колец имеется целый класс различных бикате-горных структур.

Лит.:[1] Цаленко М. Ш., Шульгейфер Е. Г., Основы теории категорий, М., 1974. М. Ш. Цаленко.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "БИКАТЕГОРИЯ" в других словарях:

  • МНОГООБРАЗИЕ — категорий понятие, аналогичное понятию многообразия универсальных алгебр. Пусть бикатегория с произведениями. Полная подкатегория категории наз. многообразием, если она удовлетворяет следующим условиям: а) если допустимый мономорфизм и б) если… …   Математическая энциклопедия

  • АБЕЛЕВА КАТЕГОРИЯ — категория, обладающая рядом характерных свойств категории всех абелевых групп. А. к. были введены как основа абстрактного построения гомологич. алгебры (см. [4]). Категория наз. абелевой (см. [2]), если она удовлетворяет следующим аксиомам: А0.… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»