БЕССЕЛЯ НЕРАВЕНСТВО это:

БЕССЕЛЯ НЕРАВЕНСТВО

неравенство


где - элемент (пред)гильбертова пространства Нсо скалярным произведением -ортогональная система ненулевых элементов из Н. Правая часть Б. в. при любой мощности множества индексов Асодержит не более счетного числа слагаемых, отличных от нуля. Б. н. вытекает из тождества Бесселя


справедливого для любой конечной системы элементов В этой формуле - коэффициенты Фурье вектора f по ортогональной системе т. е. числа


Геометрически Б. н. означает, что ортогональная проекция элемента f на линейную оболочку элементов , , имеет норму, не превосходящую нормы (т. е. гипотенуза не короче катета). Для того чтобы вектор принадлежал замкнутой линейной оболочке векторов необходимо и достаточно, чтобы Б. н. обращалось в равенство. Если это имеет место при любом , то говорят, что для системы в выполняется Ларсеваля равенство.

Для системы линейно независимых (не обязательно ортогональных) элементов из Нтождество Бесселя и Б. н. принимают вид


где - элементы матрицы, обратной к матрице Грама (см. Грама определитель).первых пвекторов исходной системы.

Б. н. предложено Ф. Бесселем (F. Bessel) в 1828 для тригонометрич. системы.

Лит..-41 ] Кудрявцев Л. Д., Математический анализ, 2 изд.,.т 2; М., 1973. Л. П. Купцов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "БЕССЕЛЯ НЕРАВЕНСТВО" в других словарях:

  • Бесселя неравенство —         неравенство для коэффициентов ряда Фурье (см. Фурье ряд) по произвольной ортонормированной системе функций φk (x) (k = 1, 2...), т. е. системе, определённой на некотором отрезке [а, b] и удовлетворяющей условиям (k ≠ l)         … …   Большая советская энциклопедия

  • НЕРАВЕНСТВО — отношение, связывающее два числа и посредством одного из знаков: (меньше), (меньше или равно), (больше), (больше или равно), (неравно), то есть Иногда несколько Н. записываются вместе, напр. Н. обладают многими свойствами, общими с равенствами.… …   Математическая энциклопедия

  • Неравенство Бесселя — В математике неравенство Бесселя утверждение о коэффициентах элемента в гильбертовом пространстве касательно ортонормированной последовательности. Пусть гильбертово пространство, и ортонормированная последовательность элементов . Тогда для… …   Википедия

  • Бессель, Фридрих — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

  • Бессель, Фридрих-Вильгельм — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

  • Бессель Ф. В. — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

  • Бессель Фридрих-Вильгельм — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

  • Бессель Ф. — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

  • Бессель Фридрих Вильгельм — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

  • Бессель Фридрих — Фридрих Вильгельм Бессель Friedrich Wilhelm Bessel Дата рождения: 22 июля 1784 Место рождения: Минден, Вестфалия сейчас Германия Дата смерти: 17 марта 1 …   Википедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»