АРТИНОВО КОЛЬЦО это:

АРТИНОВО КОЛЬЦО

артипово справа кольцо, - кольцо, удовлетворяющее условию минимальности для правых идеалов, т. е. кольцо, в к-ром любое непустое частично упорядоченное по включению множество Мправых идеалов имеет минимальный элемент (см. [1]) - такой правый идеал из М, к-рый не содержит строго никакого правого идеала пз М. Другими словами, А. к.- это кольцо, являющееся правым арти-новшм модулем над самим собой. Кольцо Аесть А. к. тогда и только тогда, когда оно удовлетворяет условию обрыва убывающих цепей правых идеалов, т. е. для любой убывающей последовательности правых идеалов кольца Асуществует такое натуральное число т, что Аналогично определяется артиново слева кольцо.

Всякое ассоциативное А. к. с единицей нётерово справа (см. Нётерово кольцо). Всякая конечномерная алгебра над полем является А. к. Наиболее полно изучены свойства А. к. в классе альтернативных колец и особенно в классе ассоциативных колец (см. Альтернативные кольца и алгебры, Ассоциативные кольца и алгебры). Джекобсона радикал ассоциативного А. к. ннльпотен-тен п содержит всякий односторонний нильидеал. Кольцо Атогда и только тогда является простым ассоциативным А. к., когда оно изоморфно кольцу всех матриц нек-рого конечного порядка над нек-рым ассоциативным телом. В классе альтернативных колец каждое простое А. к. либо ассоциативно, либо есть Кэли - Диксона алгебра над своим центром, являющимся в этом случае полем. Строение ассоциативных А. к. с нулевым радикалом Джекобсона описано (см. Полупростое кольцо). Имеется вариант этой теоремы в случае альтернативных колец. Для ассоциативных колец с ненулевым радикалом Джекобсона развита достаточно далеко идущая структурная теория (см. [1], [2]). Весьма интенсивно изучается ряд классов А. к.- квазифробениусовы кольца, однородные кольца, сбалансированные кольца.

Лит.:[1] Artin E., Nesbitt С., Thrall R., Rings with Minimum condition, Michigan, 1944; [2] Джекобcон Н., Строение колец, пер. с англ., М., 1961; [3] Итоги науки. Алгебра. Топология. Геометрия. 1965, М., 1967. с. 133-80; [4] Итоги науки. Алгебра. Топология. Геометрия. 1968, М., 1970, с. 9 - 56. К. А. Жевлаков.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "АРТИНОВО КОЛЬЦО" в других словарях:

  • Артиново кольцо — (по имени Э.Артина)  ассоциативное кольцо А с единичным элементом, в котором выполняется следующее условие обрыва убывающих цепей: всякая последовательность идеалов (для некоммутативных колец  левых идеалов) стабилизируется, то есть… …   Википедия

  • Кольцо (алгебра) — Кольцо это множество, на котором заданы две операции, «сложение» и «умножение», со свойствами, напоминающими сложение и умножение целых чисел. Содержание 1 Определения 2 Связанные определения 3 Простейшие свойства …   Википедия

  • Кольцо (множество) — Кольцо это множество, на котором заданы две операции, «сложение» и «умножение», со свойствами, напоминающими сложение и умножение целых чисел. Содержание 1 Определения 2 Связанные определения 3 Простейшие свойства …   Википедия

  • Кольцо (математика) — У этого термина существуют и другие значения, см. Кольцо. В абстрактной алгебре кольцо  это один из наиболее часто встречающихся видов алгебраической структуры. Простейшими примерами колец являются алгебры чисел (целых, вещественных,… …   Википедия

  • КВАЗИФРОБЕНИУСОВО КОЛЬЦО — QF к ольцо, артиново кольцо (слева и справа), удовлетворяющее аннуляторным условиям: для каждого левого (правого) идеала L(Н)(см. Аннулятор). Артиново слева кольцо, удовлетворяющее лишь одному из аннуляторных условий, может не быть К. к. Интерес… …   Математическая энциклопедия

  • КОЭНА - МАКОЛЕЯ КОЛЬЦО — маколеево к о л ь ц о, коммутативное локальное нётерово кольцо А, глубина prof Aк poro равна его размерности dim А. Гомологич. характеризация К. М. к. Асостоит в том, что группы или группы локальных когомологий обращаются в нуль при всех здесь m… …   Математическая энциклопедия

  • ДЖЕКОБСОНА КОЛЬЦО — коммутативное кольцо с единицей, любой простой идеал к рого является пересечением максимальных идеалов, его содержащих, т. е. кольцо, любое целостное факторкольцо к рого имеет нулевой Джекобсона радикал. Напр., любое артиново кольцо, кольцо целых …   Математическая энциклопедия

  • МАТРИЦ КОЛЬЦО — полное кольцо матриц, кольцо всех квадратных матриц фиксированного порядка над кольцом R. Кольцо матриц над R обозначается Rn или Mn(R). Всюду ниже R ассоциативное кольцо с единицей 1. Кольцо Rn изоморфно кольцу End Mвсех эндоморфизмов свободного …   Математическая энциклопедия

  • НЁТЕРОВО КОЛЬЦО — левое (правое) кольцо А, удовлетворяющее одному из следующих эквивалентных условий: 1) А левый (правый) нётеров модуль над собой; 2) любой левый (правый) идеал в Аимеет конечный базис; 3) любая строго возрастающая цепочка левых (правых) идеалов в …   Математическая энциклопедия

  • Простое кольцо (алгебра) — Содержание 1 Определение 2 Примеры и теоремы 3 Теорема Веддербёрна Артина …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»