ИЗМЕРИМОЕ РАЗБИЕНИЕ это:

ИЗМЕРИМОЕ РАЗБИЕНИЕ

пространства с мерой ( М,m) - разбиение x. этого пространства на непересекающиеся подмножества (именуемые элементами разбиения), к-рое можно получить как разбиение на множества уровня нек-рой измеримой функции (с числовыми значениями) на М. Это определение можно переформулировать в терминах "внутренних" свойств разбиения (см. [1]). В соответствии с общей тенденцией пренебрегать в вопросах теории меры множествами меры нуль часто под И. р. понимают разбиение, измеримое по mod 0, т. е. эквивалентное по mod 0 нек-рому И. р. (два разбиения x, h пространства с мерой Мэквивалентны по mod 0, если существует такое множество Nмеры 0, что разбиения пространства состоящие из пересечений с элементов разбиений x и h, совпадают).

Хотя приведенное определение имеет смысл для любого пространства с мерой, фактически И. р. рассматривают почти исключительно для Лебега пространства (и иногда для пространств, в какой-то степени обладающих свойствами последних, напр, для пространств с совершенной мерой, см. [2], [3]), так как именно в этих пространствах И. р. обладают рядом "хороших" свойств. Так, в этом случае существует система условных мер (или, как говорили раньше [1], каноническая система мер), принадлежащая И. р. Это есть система мер m(-|С )на элементах Сразбиения x, позволяющая представить интегрирование по m в виде повторного интегрирования: сначала на элементах Сосуществляется интегрирование по соответствующим мерам а затем полученный результат, к-рый можно рассматривать как функцию на факторпространстве М/x, надо проинтегрировать по имеющейся в последнем естественной мере mx (M/x, по определению, имеет своими точками элементы разбиения x, а своими измеримыми подмножествами - те, прообразы к-рых при естественной проекции измеримы; мера Интерпретируя ( М,m) как пространство элементарных событий в теории вероятностей, можно сказать, что система условных мер является нек-рым "усовершенствованием" условной вероятности, тесно связанным со спецификой пространства Лебега: для произвольных пространств элементарных событий условную вероятность, вообще говоря, нельзя интерпретировать с помощью набора каких-то мер на элементах каких-то разбиений.

Неизмеримые (и неизмеримые по mod 0) разбиения отнюдь не всегда являются "патологическими" объектами, как неизмеримые множества или функции. Напр., разбиение фазового пространства эргодической динамич. системы на ее траектории может иметь вполне "классическое" происхождение; просто его свойства отличны от свойств И. р.

Лит.:[1] Рохлин В. А., "Матем. сб.", 1949, т. 25, № 1, с. 107-50; [2] Гнеденко Б. В., Колмогоров А. Н., Предельные распределения для сумм независимых случайных величин, М.- Л., 1949; [3] Сазонов В. В., "Изв. АН СССР. Сер. матем.", 1962, т. 26, №3, с. 391-414.

Д. В. Аносов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ИЗМЕРИМОЕ РАЗБИЕНИЕ" в других словарях:

  • НЕЗАВИСИМЫЕ ИЗМЕРИМЫЕ РАЗБИЕНИЯ — пространства с нормированной мерой такие два измеримых разбиения и , что если и булевы алгебры измеримых множеств, целиком состоящие из элементов разбиений и соответственно, то элементы одной из них независимы от элементов другой в том смысле,… …   Математическая энциклопедия

  • ЭНТРОПИЙНАЯ ТЕОРИЯ ДИНАМИЧЕСКИХ СИСТЕМ — раздел эргодической теории, тесно связанный с теорией вероятностен и теорией информации. Природа этой связи в общих чертах такова. Пусть {Tt} динамич. система (обычно измеримый поток или каскад )с фазовым пространством Wи инвариантной мерой Пусть …   Математическая энциклопедия

  • Кратный интеграл — В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… …   Википедия

  • Кратный интеграл Римана — Примечание: всюду в данной статье, где используется знак имеется в виду (кратный) интеграл Римана , если не оговорено обратное; всюду в данной статье, где говорится об измеримости множества, имеется в виду измеримость по Жордану, если не… …   Википедия

  • МЕРА — множества, обобщение понятия длины отрезка, площади фигуры, объема тела, интуитивно соответствующее массе множества при нек ром распределении массы по пространству. Понятие М. множества возникло в теории функций действительного переменного в… …   Математическая энциклопедия

  • СИНУС-ПРЕОБРАЗОВАНИЕ ФУРЬЕ — см. Фурье преобразование. А СИСТЕМА счетно ветвящаяся система множеств, т. е. семейство подмножеств множества X, занумерованных всеми конечными последовательностями натуральных чисел. А С. . наз. регулярной, если . Последовательность элементов А… …   Математическая энциклопедия

  • ДАРБУ СУММА — сумма специального вида. Пусть действительная функция f(x)определена и ограничена на отрезке [ а, b], его разбиение: Суммы наз. соответственно нижней и верхней интегральной Д. с. Для любых двух разбиений t и t отрезка [ а, b]справедливо… …   Математическая энциклопедия

  • Мера множества — У этого термина существуют и другие значения, см. Мера. Мера множества  неотрицательная величина, интуитивно интерпретируемая как размер (объем) множества. Собственно, мера это некоторая числовая функция, ставящая в соответствие каждому… …   Википедия

  • Двойной интеграл — В математическом анализе кратным или многократным интегралом называют множество интегралов взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… …   Википедия

  • КРАТНЫЙ ИНТЕГРАЛ — определенный интеграл от функции нескольких переменных. Имеются различные понятия К. и. (интеграл Римана, интеграл Лебега, интеграл Лебега Стилтьеса и др.). Кратный интеграл Римана вводится на основе Жордана меры Пусть Е измеримое по Жордану… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»