ЗАРИСКОГО ТЕОРЕМА это:

ЗАРИСКОГО ТЕОРЕМА

о связности: пусть f: - собственный сюръективный морфизм неприводимых многообразий и пусть поле рациональных функций k(Y)сепарабельно алгебраически замкнуто в k(Х), а -нормальная точка, тогда f-1(y)связно (и более того, геометрически связно) (см. [2]). Эта теорема обосновывает классический 1 принцип вырождения: если общий цикл алгебраич. системы циклов является многообразием (т. е. геометрически неприводим), то любая специализация этого цикла связна.

Частным случаем 3. т. о связности является так наз. основная теорема Зариского, или теорема Зариского о бирациональных соответствиях: бирациональный морфизм алгебраич. многообразий /: является открытым вложением в окрестности нормальной точки если f -1(y)- конечное множество (см. [1]). В частности, бирациональный морфизм нормальных многообразий, биективный на точках, является изоморфизмом. Другая формулировка этой теоремы: пусть f:- квазиконечный отделимый морфизм схем, а У - квазикомпактная квазиотделимая схема, тогда существует разложение f= uog, где и- конечный морфизм, a g- открытое вложение [3].

Лит.:[1] Zariski О., "Trans. Amer. Math. Soc", 1943, v. 53, № 3, p. 490-542; [2] eго же, "Mem. Amer. Math. Soc", 1951, № 5, p. 1-90; [3] Grоthendieсk A., "Publ. Math. IHES", 1961, № 11; 1967, K"32.

В. И. Данилов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ЗАРИСКОГО ТЕОРЕМА" в других словарях:

  • ЛИ - КОЛЧИНА ТЕОРЕМА — разрешимая подгруппа Gгруппы GL(V)(V конечномерное векторное пространство над алгебраически замкнутым полем) имеет нормальный делитель G1 индекса не более где р зависит только от dim V, такой, что в Vсуществует флаг инвариантный относительно G1.… …   Математическая энциклопедия

  • ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… …   Математическая энциклопедия

  • ДИСКРЕТНАЯ ПОДГРУППА — подгруппа Г топологич. группы G(в частности, подгруппа группы Ли), являющаяся дискретным подмножеством топологич. пространства G. В локально компактных топологич. группах (в частности, в группах Ли) выделяют решетки Д. п., для к рых… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКАЯ КРИВАЯ — алгебраическое многообразие размерности 1. А. к. является наиболее изученным объектом алгебраической геометрии. В дальнейшем под А. к. понимается, как правило, неприводимая А. к. над алгебраически замкнутым полем. Наиболее простым и интуитивно… …   Математическая энциклопедия

  • ПУЧКОВ ТЕОРИЯ — специальный математич. аппарат, обеспечивающий единый подход для установления связи между локальными и глобальными свойствами топологич. пространств (в частности, геометрич. объектов) и являющийся мощным средством исследования многих задач в… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКОЕ ПРОСТРАНСТВО — обобщение понятия схемы и алгебраического многообразия. К этому обобщению приводят нек рые конструкции алгебраич. геометрии: схемы Гильберта, схемы Пикара, мнoгообразия модулей, стягивания, не выполнимые зачастую в категории схем и требующие… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ — раздел математики, изучающий геометрич. объекты, связанные с коммутативными кольцами: алгебраические многообразия и их различные обобщения ( схемы, алгебраические пространства и др.). В наивной формулировке предмет А. г. составляет изучение… …   Математическая энциклопедия

  • КОММУТАТИВНАЯ АЛГЕБРА — раздел алгебры, изучающий свойства коммутативных колец и связанных с ними объектов ( идеалов, модулей, нормирований и т. д.). К. а. выросла из задач, возникавших в теории чисел и алгебраич. геометрии. Задачи эти, как правило, относились к… …   Математическая энциклопедия

  • ЛИНЕЙЧАТАЯ ПОВЕРХНОСТЬ — в дифференциальной геометрии поверхность, образованная движением прямой линии. Прямые, принадлежащие этой поверхности, называются прямолинейными образующими, а каждая кривая, пересекающая все прямолинейные образующие, направляющей кривой. Если… …   Математическая энциклопедия

  • БАЗИСНОЕ МНОЖЕСТВО — линейной системы множество точек алгебраич. многообразия (или схемы) X, принадлежащих всем дивизорам подвижной части заданной линейной системы Lна X. Пример. Пусть пучок кривых степени пна проективной плоскости. Тогда Б. м. этого пучка состоит из …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»