АЛЕФ-НУЛЬ это:

АЛЕФ-НУЛЬ

- кардинальное число, являющееся мощностью счетного множества, обозначается

П. С. Александров.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "АЛЕФ-НУЛЬ" в других словарях:

  • алеф-нуль — іменник чоловічого роду …   Орфографічний словник української мови

  • Лузитания (московская математическая школа) — У этого термина существуют и другие значения, см. Лузитания (значения). Лузитания московская математическая школа, созданная известным русским математиком Н. Н. Лузиным. Сформировалась в конце 1910 х начале 1920 х годов, распалась в… …   Википедия

  • Список статей по математической логике —   Это служебный список статей, созданный для координации работ по развитию темы.   Данное предупреждение не ус …   Википедия

  • МНОЖЕСТВ ТЕОРИЯ — Под множеством понимается совокупность каких либо объектов, называемых элементами множества. Теория множеств занимается изучением свойств как произвольных множеств, так и множеств специального вида независимо от природы образующих их элементов.… …   Энциклопедия Кольера

  • МОЩНОСТЬ — кардинальное число, множества А такое свойство этого множества, к рое присуще любому множеству В, эквивалентному А. При этом два множества наз. эквивалентными (или равно мощным и), если между ними возможно установить взаимно однозначное… …   Математическая энциклопедия

  • Счётное множество — Не следует путать с перечислимым множеством. В теории множеств, счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество является счётным, если существует биекция ,… …   Википедия

  • Мощность множества — Мощность множества, кардинальное число множества (лат. cardinalis ← cardo  главное обстоятельство, стержень, сердцевина)  характеристика множеств (в том числе бесконечных), обобщающая понятие количества (числа) элементов конечного… …   Википедия

  • Кардинальность — Мощность множества или кардинальное число множества это обобщение понятия количества (числа элементов множества), которое имеет смысл для всех множеств, включая бесконечные. Существуют большие, есть меньшие бесконечные множества, среди них… …   Википедия

  • Несчетное множество — В теории множеств счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где обозначает множество всех натуральных… …   Википедия

  • Несчётное множество — В теории множеств счётное множество есть бесконечное множество, элементы которого возможно пронумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция , где обозначает множество всех натуральных… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»