ДИРИХЛЕ РЯД

ДИРИХЛЕ РЯД

- функциональный ряд вида

где а п -комплексные коэффициенты; l п, 0< -показатели Д. p., s= s+ it - комплексное переменное. При ln=ln пполучается так наз. обыкновенный ряд Дирихле

Ряд

представляет для s>1 дзета-функцию Римана. Ряды

где х(п)- функция, наз. Дирихле характером, изучались П. Дирихле (см. Дирихле L-функция). Ряды (1) с произвольными показателями l п наз. общими рядами Дирихле.

Общие ряды Дирихле с положительными показателями. Пусть сначала l п- положительные числа. Имеет место аналог Абеля теоремы для степенных рядов: если ряд (1) сходится в точке s0=s0+it0, то он сходится в полуплоскости s>s0, причем внутри любого угла |arg(s-s0)| <j0<p/2 сходится равномерно. Открытая область сходимости ряда есть нек-рая полуплоскость s>с. Число с наз. абсциссой сходимости Д. р., прямая s= с- прямой сходимости Д. р., полуплоскость s>с - полуплоскостью сходимости Д. р. Наряду с полуплоскостью сходимости рассматривается полуплоскость абсолютной сходимости Д. р.: s>а - открытая область, в к-рой ряд сходится абсолютно (при этом а- абсцисса абсолютной сходимости). Абсциссы сходимости и абсолютной сходимости, вообще говоря, различны; всегда

причем имеются Д. р., для к-рых а-c=d. В случав d=0 для вычисления абсциссы сходимости (абсциссы абсолютной сходимости) имеется формула

представляющая собой аналог формулы Коши - Адамара. Случай d>0 сложнее: если величина

положительна, то с=b; если и ряд (1) в точке s=0 расходится, то с=0; если и ряд (1) в точке s=0 сходится, то

Сумма ряда F(s)в полуплоскости сходимости есть аналитич. функция. При функция F(s). ведет себя асимптотически как первый член ряда: а 1 е -l1s (если а неравно 0). Если сумма ряда равна нулю, то и все коэффициенты ряда равны нулю. Максимальная полуплоскость s>h, в к-рой F(s)является аналитич. функцией, наз. полуплоскостью голоморфности функции F(s), прямая s =h наз. прямой голоморфности. Справедливо неравенство h<с, причем возможны случаи, когда h<с. Пусть q- нижняя грань таких чисел b, что в полуплоскости s>b функция F(s)по модулю ограничена (q<а). Имеет место формула

из к-рой вытекают неравенства

представляющие собой аналог неравенств Коши для коэффициентов степенного ряда.

Сумма Д. р. не может быть произвольной функцией, аналитической в какой-либо полуплоскости s>h: она, напр., должна стремиться к нулю при Однако имеет место следующий факт: какова бы ни была функция j(s), аналитическая в полуплоскости s>h, найдется такой Д. р. (1), что его сумма F(s)будет отличаться от j(s) на целую функцию.

Если последовательность показателей имеет плотность то разность между абсциссой сходимости (абсциссы сходимости и абсолютной сходимости совпадают) и абсциссой голоморфности не превосходит величины

причем имеются ряды, для к-рых эта разность равна 6. Величина d может быть любой из в частности, если n=1, 2, . . ., то d=0. Прямая голоморфности обладает тем свойством, что на ней в любом отрезке длины 2pt у суммы ряда имеется хотя бы одна особенность.

Если Д. р. (1) сходится во всей плоскости, то его сумма F(s)есть целая функция. Пусть

R- порядком целой функции F(s) (порядком по Ритту) наз. величина

Через коэффициенты ряда она выражается по формуле

Можно также ввести понятие R-т ипа функции F(s). Если

и если в горизонтальной полосе ширины, большей 2pt, функция F(s)по модулю ограничена, то F(s)=0 (аналог Лиувилля теоремы).

Ряды Дирихле с комплексными показателями. У Д. р.

(2)

с комплексными показателями открытая область абсолютной сходимости выпукла. Если

то открытые области сходимости и абсолютной сходимости совпадают. Сумма F(s)ряда (2) в области сходимости есть аналитич. функция. Область регулярности функции F(s), вообще говоря, шире области сходимости Д. р. (2). При условии

область регулярности выпукла. Пусть

L(X)- какая-нибудь целая функция экспоненциального типа, к-рая в точках l п,имеет простые нули, y(t)- функция, ассоциированная по Борелю с L(X) (см. Бореля преобразование), D- наименьшее выпуклое замкнутое множество, содержащее все особенности функции y(t), и

Тогда функции yn(t) регулярны вне и они обладают свойством биортогональности к системе lns }:

где С- замкнутый контур, охватывающий В том случае, когда yn(t) непрерывны вплоть до границы области в качестве Сможно взять границу дD. Произвольной функции F(s), аналитической в D(открытой части области ) и непрерывной в отнесем ряд

Для данной конечной выпуклой области можно построить такую целую функцию ИХ )с простыми нулями l1, l2, . .., что для любой функции F(s), аналитической в Dи непрерывной в ряд (3) равномерно сходится внутри Dи сходится к F(s). Для функции j(s), аналитической в D(не обязательно непрерывной в ), можно найти целую функцию нулевого экспоненциального типа

и функцию F(s), аналитическую в Dи непрерывную в такие, что

Тогда

Представление произвольных аналитич. функций

Д. р. в области Dустановлено также в случаях, когда D- вся плоскость или D- выпуклая бесконечная многоугольная область (ограниченная конечным числом прямолинейных отрезков).

Лит.:[1] Леонтьев А. Ф., Ряды экспонент, М., 1976; [2] Мандельбройт С, Ряды Дирихле, принципы и методы, пер. с англ., М., 1973.

А. Ф. Леонтьев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "ДИРИХЛЕ РЯД" в других словарях:

  • ДИРИХЛЕ РЯД — для аналитической почти периодической функции ряд вида представляющий собой все ряды Фурье аналитической регулярной почти периодической в полосе (a, b), , функции f(s)=f(t+it) на конти . нуальной совокупности прямых R(s) = t (см. Почти… …   Математическая энциклопедия

  • Ряд Дирихле — Рядом Дирихле называется ряд вида где s и an комплексные числа, n = 1, 2, 3, … . Абсциссой сходимости ряда Дирихле называется такое число , что при он сходится; абсциссой абсолютной сходимости называется такое число , что при …   Википедия

  • Ряд (математич.) — Ряд, бесконечная сумма, например вида u1 + u2 + u3 +... + un +... или, короче, . (1) Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей геометрической прогрессии 1 + q + q 2 +... + q… …   Большая советская энциклопедия

  • Дирихле Петер Густав Лежён — Дирихле (Dirichlet) Петер Густав Лежён (13.2.1805, Дюрен, ‒ 5.5.1859, Гёттинген), немецкий математик. В 1831‒1855 профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды в области теории чисел и математического анализа. Д.… …   Большая советская энциклопедия

  • РЯД — б е с к о н е ч н а я с у м м а, последовательность элементов (наз. ч л е н а м и д а н н о г о р я д а) нек рого линейного топологич. пространства и определенное бесконечное множество их конечных сумм (наз. ч а с т и ч н ы м и с у м м а м и р я… …   Математическая энциклопедия

  • Ряд — I         бесконечная сумма, например вида          u1 + u2 + u3 +... + un +...         или, короче,                   Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей… …   Большая советская энциклопедия

  • ДИРИХЛЕ ТЕОРЕМА — 1) Д. т. в теории диофантовых приближений: для любого действительного числа а и натурального Qсуществуют целые о и q, удовлетворяющие условию Дирихле принцип ящиков позволяет доказать и более общую теорему: для любых действительных чисел a1 …   Математическая энциклопедия

  • Дирихле интеграл — (по имени П. Г. Л. Дирихле)         название интегралов нескольких типов.          1) Интеграл                  Этот Д. и. называется также разрывным множителем Дирихле и равен π/2 при β < α, π/4 при β = α и 0 при β > α. Таким образом, Д. и. (1)… …   Большая советская энциклопедия

  • ДИРИХЛЕ ХАРАКТЕР — (mod k) функция c(п)=c(п; k )на множестве целых чисел, удовлетворяющая условиям: Иными словами, Д. х. (mod k) это арифметич. функции, к рые не равны тождественно нулю, вполне мультипликативны и периодичны с периодом k. Понятие Д. х. ввел П.… …   Математическая энциклопедия

  • Дирихле — (Dirichlet)         Петер Густав Лежён (13.2.1805, Дюрен, 5.5.1859, Гёттинген), немецкий математик. В 1831 1855 профессор Берлинского, с 1855 Гёттингенского университетов. Основные труды в области теории чисел и математического анализа. Д.… …   Большая советская энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»