ДЕФЕКТНОЕ ПОДПРОСТРАНСТВО это:

ДЕФЕКТНОЕ ПОДПРОСТРАНСТВО

оператора - ортогональное дополнение Dl, области значений оператора А l =A -lI, где А- линейный оператор, определенный на линейном многообразии DA гильбертова пространства Н, а l - регулярное значение (регулярная точка) оператора А. При этом под регулярным значением оператора Апонимается такое значение параметра X, при к-ром уравнение (А-lI) х=у имеет единственное решение для любого у, а оператор (А-lI)-1 ограничен, т. е. резольвента оператора Аограничена. При изменении l Д. п. Dl. меняется, но его размерность остается одна и та же для всех l, принадлежащих связной компоненте открытого множества всех регулярных значений оператора А.

Если А- симметрия, оператор с плотной областью определения DA, то его связными компонентами регулярности будут верхняя и нижняя полуплоскости. В этом случае а дефектные числа n+=dim Di и n-= dim D-i, где А*- сопряженный оператор, наз. (положительным и отрицательным) индексами дефекта оператора А. Кроме того, т. е. DA* есть прямая сумма DA, Di и D-i. Таким образом, если n+=n-=0, то оператор Аявляется самосопряженным; в противном случае Д. п. симметрия, оператора характеризуют степень его отклонения от самосопряженного оператора.

Д. п. играют важную роль в построении расширений симметрия, оператора до максимального оператора или до самосопряженного (гипермаксимального) оператора.

Лит.:[1] Люстерник Л. А., Соболев В. И., Элементы функционального анализа, 2 изд., М., 1965; [2] Ахиезер Н. И., Глазман И. М., Теория линейных операторов в гильбертовом пространстве, 2 изд., М., 1966; [3] Данфорд Н., Шварц Дж., Линейные операторы, пер. с англ., ч. 1-2, М., 1962-66; [4] Рисе Ф., Секефальви-Надь Б., Лекции по функциональному анализу, пер. с франц., М., 1954.

В. И. Соболев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ДЕФЕКТНОЕ ПОДПРОСТРАНСТВО" в других словарях:

  • РАСШИРЕНИЕ — о п е р а т о р а линейный оператор, график к рого содержит график данного линейного оператора. Тот факт, что оператор Весть Р. оператора А, записывается в виде АМ В. Обычные задачи теории Р.: максимально расширить оператор, сохраняя определенное …   Математическая энциклопедия

  • НОРМАЛЬНО РАЗРЕШИМЫЙ ОПЕРАТОР — линейный оператор с замкнутой областью значений. Пусть А линейный оператор с плотной в банаховом пространстве Xобластью определения и с областью значений R(А)в банаховом пространстве Y. Тогда А Н. р. о., если т. е. если R(A)является замкнутым… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»