ГОМОЛОГИИ КОМПЛЕКСА это:

ГОМОЛОГИИ КОМПЛЕКСА

исходное понятие для различных гомологич. конструкций. Пусть А - абелева категория и - цепной комплекс в категории А, т. е. семейство объектов категории Аи таких морфизмов что для всех . Факторобъекты наз. n-ми гомологиями комплекса К. и обозначаются . Семейство обозначается также через . Понятие Г. к. является основой для ряда важных конструкций в гомологич. алгебре, коммутативной алгебре, ал-гебраич. геометрии, топологии. Так, в топологии каждое топологич. пространство Xопределяет цепной комплекс в категории абелевых групп: Здесь - группа n-мерных сингулярных цепей пространства X, а - граничный гомоморфизм, п-eгомологии этого комплекса наз. n-ми группами сингулярных гомологии пространства Xи обозначаются . Двойственным образом определяется понятие когомологии коцепного комплекса.

Лит.:[1] Маклейн С., Гомология, пер. с англ., М., 1966. И. В. Долгачев.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ГОМОЛОГИИ КОМПЛЕКСА" в других словарях:

  • ГОМОЛОГИИ ПОЛИЭДРА — гомологии теория топологич. пространства, являющегося полиэдром. Г. п. возникли в трудах А. Пуанкаре (Н. Poincare, 1895) при изучении многообразий в евклидовых пространствах. Он рассматривал r мерные замкнутые подмногообразия данного многообразия …   Математическая энциклопедия

  • ГОМОЛОГИИ БАЗА — (комплекса или топологического пространства) по данной группе коэффициентов система цикловzl, z2,..., zn, удовлетворяющая свойствам: никакая нетривиальная линейная комбинация их не гомологична нулю; всякий цикл гомологичен их нек рой линейной… …   Математическая энциклопедия

  • ГОМОЛОГИИ ГРУППА — топологического пространства группа, которая ставится в соответствие топологич. пространству с целью алгебраич. исследования его топологич. свойств; это соответствие должно удовлетворять определенным условиям, важнейшими из к рых являются… …   Математическая энциклопедия

  • КОГОМОЛОГИИ КОМПЛЕКСА — см. Гомологии комплекса …   Математическая энциклопедия

  • ЛОКАЛЬНЫЕ ГОМОЛОГИИ — гомологии группы определенные в точках гомологии с компактными носителями. Эти группы совпадают с прямыми пределами по открытым окрестностям Uточки х, а для гомологически локально связных X также с обратными пределами Гомологическая размерность… …   Математическая энциклопедия

  • АЛЕКСАНДРОВА - ЧЕХА ГОМОЛОГИИ И КОГО-МОЛОГИИ — спектральные гомологии и когомологии, гомологии и когомологии, удовлетворяющие всем Стинрода Эйленберга аксиомам (кроме, быть может, аксиомы точности) и нек рому условию непрерывности. Группы (или модули) гомологии Александрова Чеха [1], [2]… …   Математическая энциклопедия

  • ОТНОСИТЕЛЬНЫЕ ГОМОЛОГИИ — группы гомологии HCp(X, A; G).пары пространств (X, А). Они определяются факторкомплексом комплекса цепей Xс коэффициентами в группе G но подкомплексу, состоящему из всех цепей с носителями в А. Эти группы обычно не изменяются при вырезании , т. е …   Математическая энциклопедия

  • Когомологии — Гомология  одно из основных понятий алгебраической топологии. Замкнутая линия гомологична нулю, если она ограничивает кусок поверхности, который отделяется от неё, если мы произведём разрез по этой линии. Например, на сфере любая замкнутая линия… …   Википедия

  • Когомология — Гомология  одно из основных понятий алгебраической топологии. Замкнутая линия гомологична нулю, если она ограничивает кусок поверхности, который отделяется от неё, если мы произведём разрез по этой линии. Например, на сфере любая замкнутая линия… …   Википедия

  • Кольцо когомологий — Гомология  одно из основных понятий алгебраической топологии. Замкнутая линия гомологична нулю, если она ограничивает кусок поверхности, который отделяется от неё, если мы произведём разрез по этой линии. Например, на сфере любая замкнутая линия… …   Википедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»