АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ АБСТРАКТНАЯ это:

АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ АБСТРАКТНАЯ
- раздел алгебраической геометрии, в к-ром изучаются общие свойства алгебраических многообразий над произвольными полями, а также их обобщения - схемы. Хотя первые работы в А. г. а. появились еще в 19 в., особенно бурное развитие этой области алгебраич. геометрии происходило, начиная с 50-х гг. 20 в., и было связано с созданием А. Гротендиком (A. Grothendieck) общей теории схем. Интерес к алгебраич. геометрии применительно к произвольным полям возник первоначально в связи с теоретико-числовыми задачами и, в частности, с теорией сравнений от двух неизвестных. Особенно существенным для развития А. г. а. было введенное Э. Артином (Е. Artin) в 1924 понятие дзета-функции алгебраич. кривой (см. Дзета-функция в алгебраич. геометрии), а также доказательство X. Хассе(Н. Hasse) в 1933 аналога гипотезы Рима-на для эллиптических кривых. Развитая при этом теория алгебраических кривых над произвольным полем констант играла существенную роль в данном доказательстве.

Почва для систематич. построения многомерной алгебраич. геометрии над произвольными полями констант была подготовлена общим развитием теории колец и полей в 10-20-х гг. 20 в. В цикле статей Б. Л. ван дер Вардена (В. L. van der Waerden, 1933-38) в основу А. г. а. была положена теория полиномиальных идеалов. В частности, им была построена пересечений теория на неособом проективном алгебраич. многообразии. Результаты работ этого направления подытожены в [4].

В 1940 А. Вейль (A. Weil) обнаружил, что доказательство гипотезы Римана для алгебраич. кривых произвольного рода требует привлечения теории многомерных многообразий над произвольными полями. В связи с этим им была построена теория абстрактных алгебраич. многообразий (не обязательно проективных) над произвольным основным полем, теория дивизоров и теория пересечений для таких многообразий, а также общая теория абелевых многообразий, ранее изучавшихся только в аналитич. случае. Под влиянием книги [9], вышедшей в 1946, общепринятой основой А. г. а. на долгое время стали теория нормировании и теория полей (язык "общих точек" Вейля).

В нач. 50-х гг. в А. г. а. были введены мощные методы коммутативной алгебры (см. [6], [8]). Дальнейшей перестройке А. г. а. послужила работа Ж. П. Серра о когерентных алгебраических пучках[7]. В ней впервые в А. г. а. были изложены идеи и методы гомологической алгебры. Развитие А. г. а. шло параллельно с развитием понятия алгебраич. многообразия. После определения А. Вейлем абстрактного алгебраич. многообразия предлагались различные обобщения этого понятия. Самым плодотворным из них оказалось понятие схемы. Систематич. изложение этих идей и построение общей теории схем было начато А. Гротендиком в 1960 в серии мемуаров [5], где введен в А. г. а. язык функторов и теории категорий и кардинально перестроены многие классич. конструкции в алгебраич. геометрии.

Бурное развитие А. г. а. было связано с осознанием того, что рамки теории схем позволяют перенести на "абстрактный случай" практически все известные в классич. комплексном случае понятия и, в частности, теорию когомологий комплексных аналитич. многообразий. Важную роль для развития А. г. а. сыграла гипотеза А. Вейля (1947), предположившего существование теории когомологий, в к-рой была бы верна Лефшеца формула для числа неподвижных точек отображения, и установившего глубокие связи этой гипотезы с чисто арифметич. вопросами алгебраич, многообразий (см. Дзета-функция в алгебраической геометрии).

Понятие топологизированной категории (топология Гротендика) нашло многочисленные применения, разработка и развитие к-рых положили начало новым направлениям А. г. а.- теории представимых функто.-ров, формальной геометрии (см. Формальная группа), Вейля когомологиям, К-теории, теории групповых схем. Развитые при этом идеи и методы нашли свое отражение во многих разделах математики (коммутативная алгебра, теория категорий, теория аналитич. ространств, топология).

Предложенное в конце 60-х гг. новое обобщение алгебраич. многообразия - алгебраическое пространство позволило расширить рамки А. г. а. и еще теснее связать ее с другими разделами алгебраич. геометрии.



Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ АБСТРАКТНАЯ" в других словарях:

  • АЛГЕБРАИЧЕСКАЯ ГЕОМЕТРИЯ — раздел математики, изучающий геометрич. объекты, связанные с коммутативными кольцами: алгебраические многообразия и их различные обобщения ( схемы, алгебраические пространства и др.). В наивной формулировке предмет А. г. составляет изучение… …   Математическая энциклопедия

  • Абстрактная алгебра — (также высшая алгебра или общая алгебра)  раздел математики, изучающий алгебраические системы (также иногда называемые алгебраическими структурами), такие как группы, кольца, поля, частично упорядоченные множества, решётки, а также… …   Википедия

  • Геометрия — (от др. греч. γῆ  Земля и μετρέω  «мерю»)  раздел математики, изучающий пространственные структуры, отношения и их обобщения[1]. Содержание …   Википедия

  • Геометрия — (греч. geometria, от ge Земля и metreo мерю)         раздел математики, изучающий пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре.          Происхождение термина «Г. , что… …   Большая советская энциклопедия

  • Аналитическая геометрия — Декартова система координат Аналитическая геометрия  раздел геометрии, в котором …   Википедия

  • Дифференциальная геометрия и топология — Дифференциальная геометрия и дифференциальная топология  два смежных раздела математики, которые изучают гладкие многообразия (обычно с дополнительными структурами). Эти два раздела математики почти неразделимы, при этом часто оба раздела… …   Википедия

  • Неевклидова геометрия — Неевклидова геометрия  в буквальном понимании  любая геометрическая система, отличная от геометрии Евклида; однако традиционно термин «неевклидова геометрия» применяется в более узком смысле и относится только к двум геометрическим… …   Википедия

  • Базис Грёбнера — некоторого идеала I алгебры многочленов относительно порядка « » на мономах  это конечное множество G многочленов из такое, что старший (относительно ) член каждого многочлена из I делится на старший член хотя бы одного многочлена из G. При… …   Википедия

  • ГЕОМЕТРИИ ОБЗОР — Геометрия раздел математики, тесно связанный с понятием пространства; в зависимости от форм описания этого понятия возникают различные виды геометрии. Предполагается, что читатель, приступая к чтению этой статьи, обладает некоторыми… …   Энциклопедия Кольера

  • Алгебра — У этого термина существуют и другие значения, см. Алгебра (значения). Алгебра (от араб. الجبر‎‎, «аль джабр»  восполнение[1])  раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»