ГЁДЕЛЯ ТЕОРЕМА О ПОЛНОТЕ это:

ГЁДЕЛЯ ТЕОРЕМА О ПОЛНОТЕ

утверждение о полноте классического исчисления предикатов: всякая предикатная формула, истинная на всех моделях, выводима (по формальным правилам классич. исчисления предикатов). Г. т. о п. показывает, что множество выводимых формул этого исчисления в определенном смысле максимально: оно содержит все чисто логические законы теоретико-множественной математики. Доказательство К. Гёделя [1] дает способ построения контрмодели (т. е. модели для отрицания) всякой формулы А, невыводимой в Генцена формальной системе без сечения. Имеются также доказательства, основанные на расширениях систем формул до максимальных, а также доказательства, использующие ал-гебраич. методы. Теорема вместе с доказательством обобщается на исчисление с равенством. Другое направление - обобщение на произвольные множества формул: каждое непротиворечивое множество формул обладает моделью (множество Мнепротиворечиво, если для любых невыводимо ). Гёделевское доказательство дает для непротиворечивого множества формул модель, элементами к-рой являются термы. Такие модели составляют исходный пункт во многих исследованиях по метаматематике теории множеств. Другое приложение моделей из термов - теорема Лёвенхейма - Сколема: если счетное множество формул имеет какую-то модель, то оно имеет счетную модель. Само гёделевское доказательство проводится средствами теории множеств без аксиомы бесконечности, т. е. средствами арифметики. Отсюда получается конструктивная форма Г. т. о п. (лемма Бернайса): для каждой предикатной формулы Аможно указать такую подстановку арифметич. предикатов вместо предикатных переменных, что выводима в формальной арифметике; здесь - арифметич. формула, выражающая, что Авыводима. Таким образом, для выводимости Адостаточна ее истинность на той модели, к-рую задает подстановка Лемма Бернайса применяется для построения моделей формальной системы в системе , если в доказана непротиворечивость .

Из Г. т. о п. можно извлечь также теорему об устранимости сечения (см. Генцена формальная система).и различные теоремы отделения, напр.: если формула, не содержащая знака равенства, выводима средствами исчисления предикатов с равенством, то она выводима в чистом исчислении предикатов; если предикатная формула выводима в арифметике со свободными предикатными переменными, то она выводима в исчислении предикатов.

Г. т. о п. допускает (при соответствующем обобщении понятия модели) обобщение на неклассич. исчисления: интуиционистские, модальные и т. п.

Лит.:[1] Godе1 К., "Monatshefte fur Math, und Phys.", 1930, Bd 37, S. 349-60; [2] Hовиков П. С., Элементы математической логики, М., 1959; [3] Клини С. К., Введение в метаматематику, пер. с англ., М., 1957. Г. Е. Минц.



Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ГЁДЕЛЯ ТЕОРЕМА О ПОЛНОТЕ" в других словарях:

  • Теорема Гёделя о полноте — У этого термина существуют и другие значения, см. Теорема Гёделя. Теорема Гёделя о полноте исчисления предикатов является одной из фундаментальных теорем математической логики: она устанавливает однозначную связь между логической истинностью… …   Википедия

  • Теорема Гёделя — Теорема Гёделя: Теорема Гёделя о полноте, или Первая теорема Гёделя (1929 год) Теорема Гёделя о неполноте, или Вторая теорема Гёделя (1930 год) …   Википедия

  • Теорема Гёделя о неполноте — У этого термина существуют и другие значения, см. Теорема Гёделя. Теорема Гёделя о неполноте и вторая теорема Гёделя[ 1]  две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой… …   Википедия

  • Теоремы Гёделя о неполноте — Теоремы Гёделя о неполноте  две теоремы математической логики о принципиальных ограничениях формальной арифметики и, как следствие, всякой достаточно сильной[1] теории первого порядка. Первая теорема утверждает, что если формальная… …   Википедия

  • Вторая теорема Гёделя — Теоремы Гёделя о неполноте две теоремы математической логики о неполноте формальных систем определённого рода. Содержание 1 Первая теорема Гёделя о неполноте 2 Вторая теорема Гёделя о неполноте …   Википедия

  • ГЁДЕЛЬ — (Godel) Курт (1906 1978) австр. логик и математик. Участвовал в работе Венского кружка. В 1933 1939 приват доцент Венского ун та, в 1940 эмигрировал в США, с 1953 проф. Ин та высших исследований в Принстоне. Г. принадлежат ряд важнейших… …   Философская энциклопедия

  • ТЕОРЕМА — (от греч. theoreo – рассматриваю) научное положение. Философский энциклопедический словарь. 2010. ТЕОРЕМА (греч. ϑεώρημα, от ϑεωρέω – рассматриваю, исследу …   Философская энциклопедия

  • ЛЁВЕНХЕЙМА - СКОЛЕМА ТЕОРЕМА — см. Гёделя теорема о полноте …   Математическая энциклопедия

  • Вторая теорема Геделя — Теоремы Гёделя о неполноте две теоремы математической логики о неполноте формальных систем определённого рода. Содержание 1 Первая теорема Гёделя о неполноте 2 Вторая теорема Гёделя о неполноте …   Википедия

  • МАТЕМАТИЧЕСКАЯ ЛОГИКА — теоретическая логика, символическая логика, раздел математики, посвященный изучению математич. доказательств и вопросов оснований математики. Исторический очерк. Идея построения универсального языка для всей математики и формализации на базе… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»