АЛГЕБРА С АССОЦИАТИВНЫМИ СТЕПЕНЯМИ это:

АЛГЕБРА С АССОЦИАТИВНЫМИ СТЕПЕНЯМИ

линейная алгебра Анад полем F, всякий элемент к-рой порождает ассоциативную подалгебру. Множество всех А. с а. с. над данным полем Fобразует многообразие алгебр, к-рое в случае, когда характеристика поля Fравна 0, задается системой тождеств


где Если F - бесконечное поле простой характеристики р, то многообразие А. с а. с. не может быть задано никакой конечной системой тождеств, но известна бесконечная независимая система тождеств, определяющая его (см. [3]). Если коммутативная А. с а. с. Л характеристики, отличной от 2, обладает идемпотентом то для Аимеет место пирсовское разложение в прямую сумму векторных подпространств:


где При этом . и - подалгебры, для Разложение играет фундаментальную роль в структурной теории А. с а. с.

Лит.:[1] Albert A. A., "Trans. Amer. Math. Soc.", 1948, v. 64, К. 3, p. 552-93; [2] Гайнов А. Т., "Успехи матем. наук", 1957, т. 12, № 3 (75), с. 141-46; [3] его ж е, "Алгебра и логика", 1970, т. 9, № 1, с. 9-33. А. Т. Тайное.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "АЛГЕБРА С АССОЦИАТИВНЫМИ СТЕПЕНЯМИ" в других словарях:

  • АЛГЕБРА — часть математики, посвященная изучению алгебраических операций. Исторический очерк. Простейшие алгебраич. операции арифметич. действия над натуральными и положительными рациональными числами встречаются в самых ранних математич. текстах,… …   Математическая энциклопедия

  • АЛГЕБРАИЧЕСКАЯ АЛГЕБРА — алгебра А с ассоциативными степенями (в частности, ассоциативная) над полем F, все элементы к рой являются алгебраическими (элемент наз. алгебраическим, если порожденная им подалгебра F[a]конечномерна, или, что равносильно, элемент аобладает… …   Математическая энциклопедия

  • ЛОКАЛЬНО НИЛЬПОТЕНТНАЯ АЛГЕБРА — алгебра, всякая конечно порожденная подалгебра к рой нильпотентна. Л. н. а. удобно себе представлять как объединение возрастающей цепочки нильпотентных подалгебр. Л. н. а. с ассоциативными степенями является нильалгеброй. Л. н. а. Ли является… …   Математическая энциклопедия

  • НИЛЬАЛГЕБРА — алгебра с ассоциативными степенями (в частности, ассоциативная), в к рой всякий элемент нильпотентен. Частным случаем Н. являются нильпотентная и локально нильпотентная алгебра. В ассоциативном случае построение Н., не являющихся локально… …   Математическая энциклопедия

  • НЕАССОЦИАТИВНЫЕ КОЛЬЦА И АЛГЕБРЫ — множества с доумя бинарными операциями + и ., удовлетворяющими всем аксиомам ассоциативных колец и алгебр, кроме, быть может, аксиомы ассоциативности умножения. Первые примеры неассоциативных колец (Н. к.) и неассоциативных алгебр (Н. а.), не… …   Математическая энциклопедия

  • ЛУПА — аналитическая аналитическое многообразие М, наделенное структурой Л., основные операции к рой (умножение, левое и правое деление) являются аналитич. отображениями в М. Если е единица лупы М, g(t), h(t) аналитич. пути, выходящие из еи имеющие в… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»