ГАУССА МЕТОД это:

ГАУССА МЕТОД

- метод последовательного исключения неизвестных для нахождения решений системы линейных уравнений, впервые описанный К. Гауссом [1]. Пусть дана система


где - элементы произвольного поля Р. Без ограничения общности можно считать, что . Г. м. состоит в следующем. Из второго уравнения системы вычитают первое ее уравнение, умноженное почленно на из третьего - первое, умноженное на из m-го - первое, умноженное на . Пусть - система полученных уравнений-разностей. При наличии ненулевого коэффициента в (после возможного изменения порядка уравнений и переменных) поступают с ней так же, как с системой , и т. д. Если ранг r системы (т. е. ранг матрицы ее коэффициентов) меньше числа т, то на r-м шага появляется система с нулевыми коэффициентами при всех неизвестных; при система считается пустой. Система тогда и только тогда совместна, когда система либо совместна (т. е. не имеет отличных от нуля свободных членов), либо пуста.

Процесс получения одного из решений (совместной) системы может быть описан следующим образом. Берется к.-л. решение системы Придавая значения неизвестным в к.-л. уравнении системы , имеющем ненулевой коэффициент при (напр., в первом ее уравнении), находят из него и получают решение системы . Иначе говоря, значение получается из системы при замене в ней неизвестных взятыми их значениями. Значения подставляются затем в систему , находится значение и получают решение и т. д. Найденные так значения составляют вместе со взятыми значениями решение системы (см. [2]).

Описанный метод допускает следующее обобщение (см. [4]). Пусть U- нек-рое подпространство векторного пространства и - множество всех решений уравнения


где хпробегает U. Для произвольной конечной системы


ненулевых образующих элементов пространства составляется система


( х - неизвестное), наз. U-сверткой системы Если пространство не содержит ненулевых элементов, то считается, что система имеет пустую U-cвертку. Если система совместна, то при любом Uее U-свертка совместна или пуста. Установлено, что для совместности системы достаточно, чтобы совместной или пустой была ее U-свертка хотя бы для одного U. Пусть, далее, - подпространства, порождаемые в пространстве векторами. e1=(1,0, ..., 0), e2=(0,1, ... , 0), ... , en=(0,0, ... ,1).

Для уравнение (*) сводится к уравнению


Пусть, напр., . Если при этом то в качестве ненулевых образующих элементов пространства можно взять векторы и тогда -свертывание системы совпадает с процедурой исключения неизвестного в Г. м.

U-свертывание системы при есть процедура одновременного исключения двух неизвестных и . Пусть, напр., . Если при этом


то для получения -свертки системы S0 можно взять строки матрицы


где


Чередуя исключения отдельных неизвестных с исключением тех или иных пар (или в общем случае наборов) неизвестных, можно для нахождения решений системы S0 строить те или иные алгоритмы, обобщающие Г. м. Лит.:[1] Gauss С. P., Beitrage zur Theorie der algebraischen Gleictumgen, Gott., 1849; И Курош А. Г., Курс высшей алгебры, 10 изд., М., 1971; [3] Фаддеев Д. К., Фаддеева В. Н., Вычислительные методы линейной алгебры, 2 изд , М.-Л., 1963; [4] Черников С. Н., Линейные неравенства, М., 1968. . С. Н. Черников.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ГАУССА МЕТОД" в других словарях:

  • Метод Гаусса (численное интегрирование) — Метод Гаусса метод численного интегрирования, позволяющий повысить алгебраический порядок точности методов на основе интерполяционных формул путём специального выбора узлов интегрирования без увеличения числа используемых значений подынтегральной …   Википедия

  • Метод Ньютона — Метод Ньютона, алгоритм Ньютона (также известный как метод касательных)  это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном… …   Википедия

  • Метод золотого сечения — метод поиска значений действительно значной функции на заданном отрезке. В основе метода лежит принцип деления в пропорциях золотого сечения. Наиболее широко известен как метод поиска экстремума в решении задач оптимизации Содержание 1 Описание… …   Википедия

  • Метод Нелдера — Мида — Последовательные симплексы в методе Нелдера Мида для функции Розенброка (англ.) (вв …   Википедия

  • Метод сопряжённых градиентов — Метод сопряженных градиентов метод нахождения локального минимума функции на основе информации о её значениях и её градиенте. В случае квадратичной функции в минимум находится за шагов. Содержание 1 Основные понятия …   Википедия

  • Метод Хука — Дживса (англ. Hooke  Jeeves), также как и алгоритм Нелдера Мида, служит для поиска безусловного локального экстремума функции и относится к прямым методам, то есть опирается непосредственно на значения функции. Алгоритм делится на две… …   Википедия

  • Метод роя частиц — (МРЧ)  метод численной оптимизации, для использования которого не требуется знать точного градиента оптимизируемой функции. МРЧ был доказан Кеннеди, Эберхартом и Ши[1] [2] и изначально предназначался для имитации социального поведения.… …   Википедия

  • Метод потенциалов — является модификацией симплекс метода решения задачи линейного программирования применительно к транспортной задаче. Он позволяет, отправляясь от некоторого допустимого решения, получить оптимальное решение за конечное число итераций. Содержание… …   Википедия

  • Метод умножения Шёнхаге — Метод умножения Шёнхаге  Штрассена (англ. Schönhage–Strassen algorithm)  быстрый метод умножения больших целых чисел. Основной идеей алгоритма является быстрое преобразование Фурье. Он был построен Арнольдом Шёнхаге и Фолькером… …   Википедия

  • Метод умножения Шёнхаге-Штрассена — это асимптотически быстрый метод умножения для больших целых чисел. Он был построен Арнольдом Шёнхаге и Фолькером Штрассеном в 1971.[1] Битовая сложность метода есть , а арифметическая сложность .[2] Этот метод использует быстрые преобразования… …   Википедия

Книги

  • Геодезия, Попов В. Н., Чекалин С. И.. Освещены основные положения геодезии как науки, рассмотрены вопросы, связанные с построением картографических изображений и решением задач по топографической карте и плану. Приведены элементы… Подробнее  Купить за 1340 руб
  • Пушка Гаусса, Jesse Russell. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Внимание! Книга представляет собой набор материалов из Википедии и/или других online-источников.High… Подробнее  Купить за 1125 руб
  • Метод Гаусса — Зейделя, Джесси Рассел. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. High Quality Content by WIKIPEDIA articles! Метод Гаусса—Зейделя является классическим итерационным… Подробнее  Купить за 870 руб
Другие книги по запросу «ГАУССА МЕТОД» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»