ГАРНАКА ИНТЕГРАЛ это:

ГАРНАКА ИНТЕГРАЛ

- обобщение несобственного интеграла Римана на класс функций f, множество точек неограниченности к-рых имеет нулевую жорданову меру и к-рые интегрируемы по Риману во всяком сегменте, не содержащем точек из . Пусть - конечная система интервалов, содержащая Тогда Г. и. определяется равенством


если последний предел при mes существует. Г. и. введен А. Гарнаком (Харнаком) [1]. Позднее к этому определению было добавлено требование, чтобы каждый интервал имел непустое пересечение с При этом Г. и. становится, вообще говоря, условно сходящимся. Г. и. частично перекрывается с Лебега интегралом и покрывается Перрона интегралом и Данжуа интегралом. В настоящее время Г. и. представляет лишь методич. и историч. интерес.

Лит.: [1] Наrnасk A., "Math. Ann.", 1883, Bd 21, S. 305-26; [2] Песин И. Н., Развитие понятия интеграла, М., 1966. В. А. Скворцов.


Математическая энциклопедия. — М.: Советская энциклопедия. . 1977—1985.

Смотреть что такое "ГАРНАКА ИНТЕГРАЛ" в других словарях:

  • ГАРМОНИЧЕСКАЯ ФУНКЦИЯ — действительная функция заданная в области Dевклидова пространства имеющая в Dнепрерывные частные производные 1 го и 2 го порядков и являющаяся решением Лапласа уравнения где декартовы прямоугольные координаты точки х. Иногда это определение… …   Математическая энциклопедия

  • ВЫМЕТАНИЯ МЕТОД — метод решения Дирихле задачи для Лапласа уравнения, развитый А. Пуанкаре (см. [1], [2], а также [4]) и состоящий в следующем. Пусть D ограниченная область евклидова пространства граница D. Пусть мера Дирака, сосредоточенная в точке ; ньютонов… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»