НАСАДОЧНЫЕ АППАРАТЫ

НАСАДОЧНЫЕ АППАРАТЫ
,

колонные аппараты, предназначенные для интенсификации тепло- и массообмена и обеспечения однородных гидродинамич. условий проведения хим.-технол. процессов. С этой целью часть объема Н. а. заполнена слоями твердых тел разл. размеров и формы-неподвижными и подвижными насадками, к-рые служат для создания развитой пов-сти контакта между взаимодействующими потоками в гетерог. системах, гл. обр. газ (пар)- жидкость.

В Н. а. неподвижная насадка засыпается на опорные решетки, имеющие отверстия для стока жидкости и прохождения газа (рис. 1). Жидкость подается на насадку сверху при помощи спец. распределит. устройств. По всей высоте насадки равномерное распределение жидкости невозможно, что объясняется т. наз. пристеночным эффектом-большей плотностью загрузки насадки в центр. части аппарата, чем около его стенок, вследствие чего жидкость стремится растекаться в направлении от центра к периферии. Для предотвращения этого и улучшения смачивания насадки ее зачастую укладывают не сплошь на всю высоту, а отдельными слоями (секциями) высотой 1,5-3,0 м и под каждым из них, кроме нижнего, размещают направляющие устройства.

Газ и жидкость движутся, как правило, противотоком; в промети используют также Н. а. с прямоточным (нисходящим) движением фаз при высокой скорости газа (до 10 м/с). В слое насадки жидкость стекает по ее элементам гл. обр. в виде тонкой пленки, и пов-стью контакта фаз является в осн. смоченная пов-сть насадки, поэтому Н. а. можно рассматривать как разновидность пленочных аппаратов. При перетоке жидкости с одного элемента насадки на другой жидкая пленка разрушается, и на нижележащем элементе образуется новая пленка. При этом часть жидкости проходит в виде струй и капель через расположенные ниже элементы насадки, а нек-рое кол-во задерживается в ней вследствие смачивания пов-сти и скопления в узких каналах, образуемых соприкасающимися насадочными телами, что приводит к увеличению гидравлич. сопротивления и снижению эффективности массообмена.

3034-10.jpg

РИС. 1. Насадочный аппарат: 1-неподвижная насадка; 2- опорные решётки; 3,4- соответственно распределители и пере распределители жидкости.

В зависимости от скорости газа Н. а. могут функционировать в след. гидродинамич. режимах: пленочном, под-висания, эмульгирования и брызгоуноса. Пленочный режим наблюдается при малой скорости газа, а также небольшой плотности орошения насадки (объем жидкости, проходящей через единицу площади поперечного сечения аппарата в единицу времени). В таком режиме скорость газа практически не влияет на кол-во задерживаемой в насадке жидкости. С возрастанием скорости газа при противотоке фаз сила трения между ними увеличивается, жидкость движется медленнее и быстро накапливается (подвисает) в насадке. В этих условиях, наз. режимом подвисания, спокойное течение жидкой пленки нарушается (возникают завихрения, брызги) и газ начинает проходить через слой жидкости в виде пузырьков (см. Барботированиe). В результате межфазная пов-сть контакта и соотв. интенсивность массообмена значит. возрастают при одновременном резком увеличении гидравлич. сопротивления.

Накопление жидкости в насадке происходит до тех пор, пока сила трения между поднимающимся по колонне газом и стекающей жидкостью не уравновесит силу тяжести жидкости, находящейся в насадке. При этом наступает режим эмульгирования, характеризующийся инверсией фаз (газ становится дисперсной фазой, а жидкость-сплошной) и образованием газо-жидкостыой эмульсии. Для обеспечения норм. проведения хим.-технол. процессов в этом режиме, к-рый отвечает макс. эффективности тепло- и массообмена и одновременно относительно большому гидравлич. сопротивлению, разработаны спец. аппараты с искусственно затопленной насадкой.

В режимах подвисания и эмульгирования целесообразно работать, если повышение гидравлич. сопротивления не играет существ. роли, напр. в абсорбц. процессах, осуществляемых при высоких давлениях. В Н. а., действующих при атм. давлении, гидравлич. сопротивление может оказаться недопустимо большим, что приведет к необходимости проводить процесс в пленочном режиме. Поэтому в каждом конкретном случае оптим. гидродинамич. режим можно установить только техн.-экономич. расчетом.

При дальнейшем увеличении скорости газа сила трения между фазами становится больше силы тяжести, жидкость перестает стекать, выбрасывается из насадки (наступает т. наз. захлебывание) и выносится из верх. части аппарата в виде брызг газовым потоком (режим брызгоуноса). На практике этот режим не используется.

Для работы с загрязненными газами и жидкостями применяют аппараты с подвижной насадкой, сравнительно легкие элементы к-рой поддерживаются потоком газа во взвешенном (псевдоожиженном) состоянии. Положение слоя взвешенных элементов фиксируется ниж. (опорной) и верх. (ограничительной) решетками. В аппаратах с неск. слоями насадки верх. решетка нижерасположенного слоя служит опорой для вышеразмещенного. Высота слоя насадки в неподвижном состоянии (без газового потока) 0,2-0,3 м, расстояние между решетками 1-1,5 м. Для улучшения контакта между газом и жидкостью в аппаратах большого диаметра пространство между решетками разделяют вертик. перегородками на прямоугольные или секторные отсеки. С целью улучшения распределения жидкости и уменьшения брызгоуноса предложены конич. аппараты, в к-рых сечение возрастает по ходу газа. Аппараты с подвижной насадкой могут функционировать при больших скоростях газа без захлебывания и обеспечивают более высокий коэф. массопередачи, однако характеризуются большим гидравлич. сопротивлением, значит. брызгоуносом и износом насадочных тел.

Для эффективной работы Н. а. насадки должны удовлетворять след. осн. требованиям: иметь большую пов-сть, хорошо смачиваться орошающей жидкостью, оказывать малое гидравлич. сопротивление газовому потоку, равномерно распределять орошение, быть стойкими к хим. воздействию газа и жидкости, обладать малой материалоем-костью и высокой мех. прочностью, иметь невысокую стоимость. Насадочные тела изготовляют обычно из металлов, стекла, керамики, пластмасс, дерева и загружают в аппараты навалом (нерегулярные насадки) либо укладывают или монтируют в определенном порядке, в частности в жесткую структуру (регулярные насадки).

Осн. характеристики насадок-уд. пов-сть и своб. объем. Под уд. пов-стью f понимают суммарную пов-сть всех насадочных тел в единице объема аппарата (м 23). Чем больше f, тем выше эффективность работы насадки, но больше гидравлич. сопротивление и меньше производительность. Своб. объем e-суммарный объем пустот между насадочными телами в единице объема аппарата (м 33). Для непористой насадки е определяют, как правило, заполнением ее объема водой. Отношение объема воды к объему, занимаемому насадкой, дает величину e. Чем она больше, тем выше производительность, меньше гидравлич. сопротивление и эффективность насадки. Поскольку при тепло- и массообмене кол-во переносимых компонентов газа и жидкости или теплоты пропорционально пов-сти контакта фаз, целесообразнее пользоваться мелкими насадками (размеры 20-30 мм), имеющими большую уд. пов-сть. Коэф. массопередачи также, как правило, больше при наличии мелкой насадки. Однако с уменьшением размеров насадочных тел ухудшается их смачивание и уменьшается доля активной пов-сти насадки, участвующая в массообмене. В мелких насадках эффективно смоченной бывает менее 50%, а иногда даже менее 10% всей пов-сти. В крупных, особенно регулярных, насадках степень смоченности может достигать почти 100%.

3034-11.jpg

3034-12.jpg

Рис. 2. Некоторые типы насадок: 1-5- кольца соответственно Рашига, Лессинга, с крестообразной перегородкой, Палля, Ба-рада; 6,7-седла соответственно Берля и Инталлокс; 8-розетка Теллера; 9-хордовая; 10-керамические блочные; 11-из перфо рированных металлических листов (Спрейпак); 12-Зульцера; 13-Стедмена; 14-Гудлоу; 15-складчатый кубик.


Элементы нерегулярных насадок выполняют в виде колец, спиралей, роликов, шаров, полусфер, седел и др. (рис. 2). Наиб. распространены кольца Рашига с высотой, равной диаметру. Известны модификации этой насадки с лучшими характеристиками, напр. кольца Палля и Лессинга. Среди седловидных насадок особенно широко применяют седла Берля, а также насадки Инталлокс. В лаб. условиях используют насыпные сетчатые насадки типа колец Барада, пластмассовые розетки Теллера, насадки из проволочных геликоидов. В ряде случаев применяют кусковые насадки из кокса, кварца и т. д. Для аппаратов с подвижной насадкой, как правило, используют полые или сплошные шары из полиэтилена и др. пластмасс, а также из пористой резины.

Регулярные насадки в отличие от нерегулярных характеризуются низким гидравлич. сопротивлением и более высокой пропускной способностью. Простейшая регулярная насадка-хордовая, представляющая собой ряд деревянных брусьев, закрепленных на нек-ром расстоянии друг от друга. Плоскопараллельная насадка изготовляется в виде набираемых из металлич. листов пакетов, обычно устанавливаемых один на другой "крест-накрест". Сетчатые насадки м. б. пакетными (типа Зульцера и др.) и складчатыми, напр. в виде кубиков. Значительно проще в изготовлении, монтаже и эксплуатации рулонные сетчатые насадки типа Гудлоу, Стедмена и т. п., выполненные из сетчатых лент спец. плетения либо из гофрированной сетки, к-рая скатана в рулон диаметром, равным диаметру аппарата. Использование таких насадок позволяет существенно снизить влияние пристеночного эффекта и упростить сборку Н. а.

Трубчатые регулярные насадки-пучки вертик. труб, к-рые касаются друг друга стенками или закрепляются в трубных досках с определенным шагом. Применяют также насадки, собираемые из гофрированных лент с противоположным наклоном гофр на смежных лентах. Эти типы насадок обладают сравнительно большой материалоемкостью, поэтому их иногда заменяют керамич. сотовыми блоками. В вакуумной ректификации используют объемные насадки из гофрированных листов, размещенных горизонтально, или просечно-вытяжного листа. В слое насадки небольшой высоты соседние листы укладывают гофрами перпендикулярно один другому, как в случае гофрированной сетчатой насадки.

Разновидность Н. а.-тарельчато-насадочные аппараты, в к-рых размещены с зазором чередующиеся слои насадок и тарелки (см. также Тарельчатые аппараты). При использовании в таких аппаратах, напр., провальных тарелок и насадок из гофрированных лент обеспечиваются равномерное распределение жидкости и высокая эффективность тепло- и массообмена в широком диапазоне нагрузок по газу и жидкости при незначит. брызгоуносе.

Н. а. обладают высокими разделительной способностью смесей на компоненты и производительностью, а также сравнительно низким гидравлич. сопротивлением, просты в изготовлении, надежны в работе. Недостатки: трудность отвода теплоты, выделяющейся при контакте взаимод. потоков, и плохая смачиваемость насадки при малых плотностях орошения. Н. а. широко применяют в лаб. практике, хим. и смежных отраслях пром-сти для проведения хим. (см. Реакторы химические), тепловых (см., напр., Абсорбция, Градирни, Ректификация, Теплообмен )и массообменных (см. Газов очистка, Пылеулавливание, Туманоулавливание )процессов, сепарации брызг из газовых потоков (см., напр., Каплеулавливание )и т. д.

Лит.: Олевский В. М., Ручянский В. Р., Ректификация термически нестойких продуктов, М., 1972; Рамм В. М., Абсорбция газов, 2 изд., М., 1976; Коган В. Б., Харисов М. А., Оборудование для разделения смесей под вакуумом, Л., 1976; Кафаров В. В., Основы массопередачи, 3 изд., М., 1979; Вибрационные массообменные аппараты, М., 1980; Заминян А. А., Рамм В. М., Абсорберы с псевдоожиженной насадкой, М., 1980; Марценюк А. С., Стабни-ков В. Н., Пленочные тепло- и массообменные аппараты в пищевой промышленности, М., 1981; Справочник азотчика, 2 изд., М., 1986.

В. М. Олевский.


Химическая энциклопедия. — М.: Советская энциклопедия. . 1988.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "НАСАДОЧНЫЕ АППАРАТЫ" в других словарях:

  • ПЛЁНОЧНЫЕ АППАРАТЫ — устройства, в к рых жидкость стекает в виде тонкой пленки по стенкам труб или каналов, соприкасаясь с потоком газа, пара или др. несмешивающейся жидкости либо участвуя в передаче теплоты др. потоку жидкости или газа через твердую стенку. В хим.… …   Химическая энциклопедия

  • РЕКТИФИКАЦИЯ — (от позднелат. rectificatio выпрямление, исправление), разделение жидких смесей на практически чистые компоненты, отличающиеся т рами кипения, путем многократных испарения жидкости и конденсации паров. В этом осн. отличие Р. от дистилляции, при к …   Химическая энциклопедия

  • РЕАКТОРЫ ХИМИЧЕСКИЕ — (от лат. rе приставка, означающая обратное действие, и actor приводящий в действие, действующий), пром. аппараты для осуществления хим. р ций. Конструкция и режим работы Р. х. определяются типом р ции, фазовым состоянием реагентов, характером… …   Химическая энциклопедия

  • Реакторы химические —         аппараты для проведения реакций химических (См. Реакции химические). Конструкция и режим работы Р. х. определяются как агрегатным состоянием взаимодействующих веществ, так и условиями (температурой, давлением, концентрациями реагентов и… …   Большая советская энциклопедия

  • МАССООБМEН — необратимый перенос массы компонента смеси в пределах одной или неск. фаз. Осуществляется в результате хаотич. движения молекул (мол. диффузия), макроскопич. движения всей среды (конвективный перенос), а в турбулентных потоках также в результате… …   Химическая энциклопедия

  • Экстракция — (от позднелат. extractio извлечение)         экстрагирование, процесс разделения смеси жидких или твёрдых веществ с помощью избирательных (селективных) растворителей (экстрагентов).          Процесс Э. включает 3 последовательные стадии: смешение …   Большая советская энциклопедия

  • Экстрактор —         (a. extractor, extraction unit, extraction apparatus; н. Extraktor; ф. extracteur, appareil d extraction; и. extractor) аппарат для разделения жидких или твёрдых веществ c помощью избирательных (селективных) растворителей (экстрагентов).… …   Геологическая энциклопедия

  • Скруббер — (англ. «scrubber», от англ. scrub  «скрести», «чистить»)  устройство, используемое для очистки твёрдых или газообразных сред от примесей в различных химико технологических процессах. Скруббер По видам применения выделяют два основных… …   Википедия

  • Абсорберы — Абсорбер (от лат. absorbeo поглощаю) аппарат для поглощения газов, паров, для разделения газовой смеси на составные части растворением одного или нескольких компонентов этой смеси в жидкости, называемой абсорбентом (поглотителем). Абсорбер обычно …   Википедия

  • Экстракторы — 3.3. Экстракторы и оборудование для экстракции растворителем Вводное замечание В экстракторы с растворителем поступает как раствор облученного топлива из диссольверов, так и органический раствор, с помощью которого разделяются уран, плутоний и… …   Официальная терминология


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»