Кратный интеграл это:

Кратный интеграл
        интеграл от функции, заданной в какой-либо области на плоскости, в трёхмерном или n-мерном пространстве. Среди К. и. различают двойные интегралы, тройные интегралы и т. д. n-кратные интегралы.
         Пусть функция f (x, y) задана в некоторой области D плоскости хОу. Разобьем область D на n частичных областей di, площади которых равны si, выберем в каждой области di точку (ξi, ηi) (см. рис.) и составим интегральную сумму
        
        Если при неограниченном уменьшении максимального диаметра частичных областей di суммы S имеют предел независимо от выбора точек (ξi, ηi), то этот предел называют двойным интегралом от функции f (x, у) по области D и обозначают
        
        Аналогично определяется тройной интеграл и вообще n-кратный интеграл.
         Для существования двойного интеграла достаточно, например, чтобы область D была замкнутой квадрируемой областью (См. Квадрируемая область), а функция f (x, y) была непрерывна в D. К. и. обладают рядом свойств, аналогичных свойствам простых Интегралов. Для вычисления К. и. обычно приводят его к повторному интегралу (См. Повторный интеграл). В специальных случаях для сведения К. и. к интегралам меньшей размерности могут служить Грина формулы и Остроградского формула. К. и. имеют обширные применения: с их помощью выражаются объёмы тел, их массы, статические моменты, моменты инерции и т. п.
         Лит. см. при статьях Интегральное исчисление, Интеграл.
        Рис. к ст. Кратный интеграл.
        Рис. к ст. Кратный интеграл.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Кратный интеграл" в других словарях:

  • КРАТНЫЙ ИНТЕГРАЛ — интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определенному интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… …   Большой Энциклопедический словарь

  • КРАТНЫЙ ИНТЕГРАЛ — определенный интеграл от функции нескольких переменных. Имеются различные понятия К. и. (интеграл Римана, интеграл Лебега, интеграл Лебега Стилтьеса и др.). Кратный интеграл Римана вводится на основе Жордана меры Пусть Е измеримое по Жордану… …   Математическая энциклопедия

  • Кратный интеграл — В математическом анализе кратным или многократным интегралом называют множество интегралов, взятых от переменных. Например: Замечание: кратный интеграл − это определенный интеграл, при его вычислении всегда получается число. Содержание 1… …   Википедия

  • кратный интеграл — интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определённому интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, n… …   Энциклопедический словарь

  • КРАТНЫЙ ИНТЕГРАЛ — интеграл от функции нескольких переменных. Определяется при помощи интегральных сумм, аналогично определ. интегралу от функции одного переменного (см. Интегральное исчисление). В зависимости от числа переменных различают двойные, тройные, я… …   Естествознание. Энциклопедический словарь

  • Кратный интеграл Римана — Примечание: всюду в данной статье, где используется знак имеется в виду (кратный) интеграл Римана , если не оговорено обратное; всюду в данной статье, где говорится об измеримости множества, имеется в виду измеримость по Жордану, если не… …   Википедия

  • Интеграл Виноградова — кратный интеграл вида где являющийся средним значением степени 2k модуля тригонометрической суммы. Теорема Виноградова о величине этого интеграла теорема о среднем лежит в основе оценок сумм Вейля. Литература Виноградова инте …   Википедия

  • Интеграл — Определённый интеграл как площадь фигуры У этого термина существуют и другие значения, см. Интеграл (значения). Интеграл функции  …   Википедия

  • ПОВТОРНЫЙ ИНТЕГРАЛ — интеграл, в к ром последовательно выполняется интегрирование по разным переменным, т. е. интеграл вида (1) Функция f(x, y).определена на множестве А, лежащем в прямом произведении XX Y пространств Xи У, в к рых заданы s конечные меры mx и my,… …   Математическая энциклопедия

  • Криволинейный интеграл —         интеграл, взятый вдоль какой либо кривой на плоскости или в пространстве. Различают К. и. 1 го и 2 го типов. К. и. 1 го типа возникает, например, при рассмотрении задачи о вычислении массы кривой переменной плотности; он обозначается… …   Большая советская энциклопедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»