Конические сечения это:

Конические сечения
        линии, которые получаются сечением прямого кругового Конуса плоскостями, не проходящими через его вершину. К. с. могут быть трёх типов:
         1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая — Эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.
         2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая — Парабола, целиком лежащая на одной полости.
         3) Секущая плоскость пересекает обе полости конуса; линия пересечения — Гипербола состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.
        С точки зрения аналитической геометрии К. с.— действительные нераспадающиеся Линии второго порядка.
        В тех случаях, когда К. с. имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:
         a11x2+2a12xy + a22y2 = a33.
        Дальнейшие исследования таких (называемых центральными) К. с. показывают, что их уравнения могут быть приведены к ещё более простому виду:
         Ах2 + Ву2= С, (1)
        если за направления осей координат выбрать т. н. главные направления — направления главных осей (осей симметрии) К. с. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение (1) определяет эллипс; если А и В разного знака, то — гиперболу.
        Уравнение параболы привести к виду (1) нельзя. При надлежащем выборе осей координат (одна ось координат — единственная ось симметрии параболы, другая — перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:
         y2 = 2рх.
        К. с. были известны уже математикам Древней Греции (например, Менехму, 4в. до н. э.); с помощью этих кривых решались некоторые задачи на построение (удвоение куба и др.), оказавшиеся недоступными при использовании простейших чертёжных инструментов — циркуля и линейки. В первых дошедших до нас исследованиях греческие геометры получали К. с., проводя секущую плоскость перпендикулярно к одной из образующих, при этом, в зависимости от угла раствора при вершине конуса (т. е. наибольшего угла между образующими одной полости), линия пересечения оказывалась эллипсом, если этот угол —острый, параболой, если — прямой, и гиперболой, если — тупой. Наиболее полным сочинением, посвященным этим кривым, были «Конические сечения» Аполлония Пергского (около 200 до н. э.). Дальнейшие успехи теории К. с. связаны с созданием в 17 в. новых геометрических методов: проективного (французские математики Ж. Дезарг, Б. Паскаль) и в особенности координатного (французские математики Р. Декарт, П. Ферма).
        При надлежащем выборе системы координат уравнение К. с. может быть приведено к виду:
         y2 = 2px + λx2 (р и λ постоянные).
        Если р ≠ 0, то оно определяет параболу при λ = 0, эллипс при λ < 0, гиперболу при λ > 0. Геометрическое свойство К. с., содержащееся в последнем уравнении, было известно уже древнегреческим геометрам и послужило для Аполлония Пергского поводом присвоить отдельным типам К. с. названия, сохранившиеся до сих пор: слово «парабола» (греческого parabole) означает приложение (т. к. в греческой геометрии превращение прямоугольника данной площади y2 в равновеликий ему прямоугольник с данным основанием 2p называлось приложением данного прямоугольника к этому основанию); слово «эллипс» (греческий élleipsis) — недостаток (приложение с недостатком), слово «гипербола» (греческий hyperbole) — избыток (приложение с избытком).
        С переходом к современным методам исследования стереометрическое определение К. с. было заменено планиметрическими определениями этих кривых как геометрических мест на плоскости. Так, например, эллипс определяется как геометрическое место точек, для которых сумма расстояний от двух данных точек (фокусов) имеет данное значение.
        Можно дать другое планиметрическое определение К. с., охватывающее все три типа этих кривых: К. с.— геометрическое место точек, для каждой из которых отношение её расстояний до данной точки («фокуса») к расстоянию до данной прямой («директрисы») равно данному положительному числу («эксцентриситету») е. Если при этом е < 1, то К. с.— эллипс; если е > 1, то — гипербола; если е = 1, то — парабола.
        Интерес к К. с. всегда поддерживался тем, что эти кривые часто встречаются в различных явлениях природы и в человеческой деятельности. В науке К. с. приобрели особенное значение после того, как немецкий астроном И. Кеплер открыл из наблюдений, а английский учёный И. Ньютон теоретически обосновал законы движения планет, один из которых утверждает, что планеты и кометы Солнечной системы движутся по К. с., в одном из фокусов которого находится Солнце. Следующие примеры относятся к отдельным типам К. с.: параболу описывает снаряд или камень, орошенный наклонно к горизонту (правильная форма кривой несколько искажается сопротивлением воздуха); в некоторых механизмах пользуются зубчатыми колёсами эллиптической формы («эллиптическая зубчатка»); гипербола служит графиком обратной пропорциональности, часто наблюдающейся в природе (например, закон Бойля — Мариотта).
        Лит.: Александров П. С., Лекции по аналитической геометрии, М., 1968; Ван дер Варден Б. Л., Пробуждающаяся наука, пер. с голл., М., 1959.
        В. И. Битюцков.
        Рис. к ст. Конические сечения.
        Рис. к ст. Конические сечения.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотреть что такое "Конические сечения" в других словарях:

  • Конические сечения — Конические сечения: окружность, эллипс, парабола (плоскость сечения параллельна образующей конуса), гипербола. Коническое сечение или коника есть пересечение плоскости с круговым конусом. Существует три главных типа конических сечений: эллипс,… …   Википедия

  • КОНИЧЕСКИЕ СЕЧЕНИЯ — кривые, получающиеся при пересечении конуса плоскостью в разных направлениях; их виды: эллипс, гипербола, парабола. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. КОНИЧЕСКИЕ СЕЧЕНИЯ так назыв. кривые,… …   Словарь иностранных слов русского языка

  • КОНИЧЕСКИЕ СЕЧЕНИЯ — линии пересечения круглого конуса (см. Коническая поверхность) с плоскостями, не проходящими через его вершину. В зависимости от взаимного расположения конуса и секущей плоскости получают три типа конических сечений: эллипс, параболу, гиперболу …   Большой Энциклопедический словарь

  • КОНИЧЕСКИЕ СЕЧЕНИЯ — линии пересечения прямого кругового конуса (см. (1)) плоскостями, не проходящими через его вершину. К таким линиям относятся: (см.), (см.) и (см.). Если секущая плоскость перпендикулярна оси конуса, то в сечении получается окружность. В… …   Большая политехническая энциклопедия

  • КОНИЧЕСКИЕ СЕЧЕНИЯ — плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек,… …   Энциклопедия Кольера

  • конические сечения — линии пересечения круглого конуса (см. Коническая поверхность) с плоскостями, не проходящими через его вершину. В зависимости от взаимного расположения конуса и секущей плоскости получают три типа конического сечения: эллипс (рис., а), параболу… …   Энциклопедический словарь

  • КОНИЧЕСКИЕ СЕЧЕНИЯ — линии пересечения круглого конуса с плоскостями, не проходящими через его вершину. К. с. могут быть 3 типов (см. рис.): а секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения замкнутая овальная кривая… …   Большой энциклопедический политехнический словарь

  • КОНИЧЕСКИЕ СЕЧЕНИЯ — линии, к рые получаются сечением прямого кругового конуса плоскостями, не проходящими через его вершину. К. с. могут быть трех типов: 1) секущая плоскость пересекает все образующие конуса в точках одной его полости (рис., а):линия пересечения… …   Математическая энциклопедия

  • КОНИЧЕСКИЕ СЕЧЕНИЯ — линии пересечения круглого конуса (см. Коническая поверхность) с плоскостями, не проходящими через его вершину. В зависимости от взаимного расположения конуса и секущей плоскости получают три типа К. с.: эллипс (рис., а), параболу (б), гиперболу… …   Естествознание. Энциклопедический словарь

  • Конические сечения — При вращении прямоугольного треугольника около одного из катетов, гипотенуза с ее продолжениями описывает К. поверхность, называемую поверхностью прямого кругового конуса, которая может быть рассматриваема как непрерывный ряд прямых, проходящих… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Книги

Другие книги по запросу «Конические сечения» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»