Кодирование это:

Кодирование
        операция отождествления символов или групп символов одного Кода с символами или группами символов другого кода. Необходимость К. возникает прежде всего из потребности приспособить форму сообщения к данному каналу связи или какому-либо другому устройству, предназначенному для преобразования или хранению информации. Так, сообщения представленные в виде последовательности букв, например русского языка, и цифр, с помощью телеграфных кодов преобразуются в определённые комбинации посылок тока. При вводе в вычислительные устройства обычно пользуются преобразованием числовых данных из десятичной системы счисления в двоичную и т.д. (см. Кодирующее устройство).
         К. в информации теории (См. Информации теория) применяют для достижения следующих целей: во-первых, для уменьшения так называемой избыточности (См. Избыточность) сообщений и, во-вторых, для уменьшения влияния помех, искажающих сообщения при передаче по каналам связи (см. Шеннона теорема). Поэтому выбор нового кода стремятся наиболее удачным образом согласовать со статистической структурой рассматриваемого источника сообщений. В какой-то степени это согласование имеется уже в коде телеграфном (См. Код телеграфный), в котором чаще встречающиеся буквы обозначаются более короткими комбинациями точек и тире.
         Приёмы, применяемые в теории информации для достижения указанного согласования, можно пояснить на примере построения «экономных» двоичных кодов. Пусть канал может передавать только символы 0 и 1, затрачивая на каждый одно и то же время t. Для уменьшения времени передачи (или, что то же самое, увеличения её скорости) целесообразно до передачи кодировать сообщения таким образом, чтобы средняя длина L кодового обозначения была наименьшей. Пусть х1, х2,..., xn обозначают возможные сообщения некоторого источника, a p1, р2,..., р2 — соответствующие им вероятности. Тогда, как устанавливается в теории информации, при любом способе К.,
         где L Н, (1)
        
        
         Энтропия источника. Граница для L в формуле (1) может не достигаться. Однако при любых pi существует метод К. (метод Шеннона — Фэно), для которого
         LН + 1. (2)
         Метод состоит в том, что сообщения располагаются в порядке убывания вероятностей и полученный ряд делится на 2 части с вероятностями, по возможности близкими друг к другу. В качестве 1-го двоичного знака принимают 0 в 1-й части и 1 — во 2-й. Подобным же образом делят пополам каждую из частей и выбирают 2-й двоичный знак и т.д., пока не придут к частям, содержащим только по одному сообщению.
         Пример 1. Пусть n = 4 и p1=9/16, р2 = р3 = 3/16, p4= 1/16. Применение метода иллюстрируется табл.:
        --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
        | х,                              | Pi                              | Кодовое обозначение                                                                      |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | х1                              | 9/16                          | 0                               |                                  |                                  |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | х2                              | 3/16                          | 1                               | 0                               |                                  |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | х3                              | 3/16                          | 1                               | 1                               | 0                                |
        |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
        | х3                              | 1/16                          | 1                               | 1                               | 1                                |
        --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
        
        B данном случае L = Н = 1,623. Всё сказанное применимо и к случаю, когда алфавит нового кода содержит не 2, как предполагалось выше, а m > 2 букв. При этом лишь величина Н в формулах (1) и (2) должна быть заменена величиной H/log2m.
         Задача о «сжатии» записи сообщений в данном алфавите (то есть задача об уменьшении избыточности) может быть решена на основе метода Шеннона — Фэно. Действительно, с одной стороны, если сообщения представлены последовательностями букв длины N из м-буквенного алфавита, то их средняя длина LN после К. всегда удовлетворяет неравенству LNNH/log2т, где Н — энтропия источника на букву. С другой стороны, при сколь угодно малом ε>0 можно добиться выполнения при всех достаточно больших N неравенства
        . (3)
        . (3)
         С этой целью пользуются К. «блоками»: по данному ε выбирают натуральное число s и делят каждое сообщение на равные части — «блоки», содержащие по s букв. Затем эти блоки кодируют методом Шеннона — Фэно в тот же алфавит. Тогда при достаточно больших N будет выполнено неравенство (3). Справедливость этого утверждения легче всего понять, рассматривая случай, когда источником является последовательность независимых символов 0 и 1, появляющихся с вероятностями соответственно р и q, pq. Энтропия на блок равна s-кpaтной энтропии на одну букву, т. е. равна sH =s (plog2 1/p+qlog2 1/q). Кодовое обозначение блока требует в среднем не более sH + 1 двоичных знаков. Поэтому для сообщения длины N букв LN≤(1+N/s) (sH+1) = N (H+1/s) (1+s/N), что при достаточно больших s и N/s приводит к неравенству (3). При таком К. энтропия на букву приближается к своему максимальному значению — единице, а избыточность — к нулю.
         Пример 2. Пусть источником сообщений является последовательность независимых знаков 0 и 1, в которой вероятность появления нуля равна р = 3/4, а единицы q = 1/4. Здесь энтропия Н на букву равна 0,811, а избыточность — 0,189. Наименьшие блоки (s = 2), то есть 00, 01, 10, 11, имеют соответственно вероятности р2 = 9/16, pq = 3/16, qp = 3/16, q2 =1/16. Применение метода Шеннона — Фэно (см. пример 1) приводит к правилу К.: 00→0, 01→10, 10→110, 11→111. При этом, например, сообщение 00111000... примет вид 01111100... На каждую букву сообщения в прежней форме приходится в среднем 27/32 = 0,844 буквы в новой форме (при нижней границе коэффициента сжатия, равной Н = 0,811). Энтропия на букву в новой последовательности равна 0,811/0,844 = 0,961, а избыточность равна 0,039.
         К., уменьшающее помехи, превратилось в большой раздел теории информации, со своим собственным математическим аппаратом, в значительной мере чисто алгебраическим (см. Канал, Шеннона теорема и литературу при этих статьях).
         Ю. В. Прохоров.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Синонимы:

Антонимы:

Смотреть что такое "Кодирование" в других словарях:

  • Кодирование — Encoding Отождествление квантованного сигнала электросвязи с кодовыми словами Примечания: 1. Под кодовым словом понимается упорядоченная последовательность символов некоторого алфавита. 2. В конкретных устройствах квантование сигнала электросвязи …   Словарь-справочник терминов нормативно-технической документации

  • Кодирование — Кодирование: В Викисловаре есть статья «кодирование» Кодирование информации  процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической… …   Википедия

  • Кодирование — процесс представления данных последовательностью символов, кодов, сигналов. Кодирование позволяет представить данные в форме, удобной для использования в системах и сетях. По английски: Coding См. также: Кодирование Обработка сигналов Коды… …   Финансовый словарь

  • КОДИРОВАНИЕ — (от франц. code – свод законов, правил) – отображение (преобразование) нек рых объектов (событий, состояний) в систему конструктивных объектов (называемых кодовыми образами), совершаемое по определ. правилам, совокупность к рых наз. шифром К.,… …   Философская энциклопедия

  • КОДИРОВАНИЕ — отображение признаков геол. объектов в символах некоторого усл. алфавита. Различается непозиционное кодирование, при котором каждый признак обозн. самостоятельным знаком, и позиционное кодирование, в котором имеет значение не только форма знака,… …   Геологическая энциклопедия

  • КОДИРОВАНИЕ — [< фр. coder (за)кодировать] 1) инф. процесс шифрования; перевод значений из одной системы знаков в другую; 2) психол. процесс психологического воздействия и внушение как средство перестройки организма пациента или установки его на здоровый образ …   Словарь иностранных слов русского языка

  • кодирование — шифрование, программирование, зашифровывание, гаммирование, шифровка, закодирование, зашифровка, кодировка, зашифрование, гипнотизирование Словарь русских синонимов. кодирование сущ., кол во синонимов: 12 • гаммирование (1) …   Словарь синонимов

  • кодирование — Преобразование дискретного сообщения в дискретный сигнал, осуществляемое по определенному правилу. [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.] кодирование… …   Справочник технического переводчика

  • КОДИРОВАНИЕ — КОДИРОВАНИЕ, смотри в статье Код …   Современная энциклопедия

  • КОДИРОВАНИЕ — операция отождествления символов или групп символов одного кода с символами или группами символов другого кода …   Большой Энциклопедический словарь

  • кодирование — КОДИРОВАТЬ, рую, руешь; анный; сов. и несов., что (спец.). Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

Книги

Другие книги по запросу «Кодирование» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»